

POWER METER PW3336/PW3337

Power Measuring Instruments

High-precision, 3-channel power meter with built-in harmonic measurement

Accurately measure devices up to 1,000 V/65 A AC/DC with direct input

The PW3336 (2-channel) and PW3337 (3-channel) can measure DC and a variety of power connections ranging from single-phase 2-wire to 3-phase 4-wire*.

- For development and production of motors, inverters, power conditioners, power supplies, and other devices
- Assess and verify the energy-saving performance of industrial equipment such as heavy machinery, airconditioners as well as household appliances

Voltage, current, and power basic accuracy: ±0.15%

 Measurement frequencies : DC, 0.1 Hz to 100 kHz

: Up to 65 A, direct input High-current measurement

 Harmonic measurement up to the 50th order : IEC 61000-4-7 compliant

 High-accuracy measurement, even with a low power factor : Ideal for no-load testing of transformers and motors

 Measure up to 5,000 A AC : Built-in external sensor input terminals

High-accuracy High-current Harmonic measurement

Support for development and production of motors, transformers, air-conditioners, and other industrial equipment

The PW3336 series (2-channel) and PW3337 series (3-channel) are easy-to-use, high-accuracy power meters that deliver current measurement of up to 65 A with direct input as well as built-in harmonic analysis functionality, all with accuracy that exceeds that of previous HIOKI power meters.

World class performance

Measure up to 65 A with direct input

Measurement accuracy that remains unchanged for high-current measurement

Accuracy is guaranteed for currents of up to 65 A with direct input. The power meters can also measure high currents in excess of 65 A with optional current sensors. Direct-input power meters typically exhibit degraded accuracy when inputting high currents due to shunt resistor self-heating. However, the PW3336 and PW3337 reduce input resistance with a DCCT design that virtually eliminates this type of accuracy degradation.

2mA 65A 5000A

Direct input Sensor input

2 A 3-channel power meter

Enabling you to select the optimal range for each connection. The advanced engineering of the PW3336 and PW3337 enables you to measure an inverter's primary-side DC power supply and its secondary-side 3-phase output at the same time. The power meters make a tremendous contribution in applications that need to measure the input/output efficiency of inverters, uninterruptible power supplies, and other power supply equipment.

Best-in-class accuracy of ±0.15% rdg.

HIOKI has drawn on its accumulated base of technology and experience to deliver best-in-class accuracy for the PW3336/PW3337. This rock-solid accuracy serves to support customers throughout the full range of measurement situations.

 $\pm 0.15\%$ rdg.

Simultaneously measure power consumption and all harmonic parameters, from single-phase 2-wire to 3-phase 4-wire measurement lines

2ch

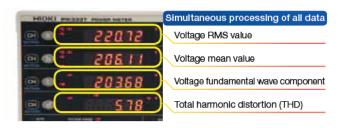
PW3336 series (2-channel models)
Measurement lines: 1P2W/1P3W/3P3W

3ch

PW3337 series (3-channel models)
Measurement lines: 1P2W/1P3W/3P3W/3P4W

World class performance

Simultaneous processing of power data and all harmonic data


All data, including RMS values, mean values, DC components, AC components, fundamental wave components, harmonic measurement, and integration measurement, is processed in parallel internally. There is no need to switch modes depending on whether you wish to acquire power data or harmonic data-simply switch the display to obtain measured values with true simultaneity. Additionally, PC communications software* can be used to capture measurement data, including from multiple synchronized instruments.

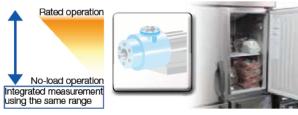
*Available soon for free download from the HIOKI website.

Figh-accuracy measurement, even with low-power-factor input

Because power factor has little impact at just $\pm 0.1\%$ f.s., the PW3336/PW3337 can measure active power of low-power-factor input at a high level of accuracy, for example during no-load-loss testing, a technique that is used to evaluate energy-saving performance of transformers.

Even though the high current waveform crest factor that typically accompanies no-load operation causes the power factor to deteriorate, measurements taken with the PW3336/PW3337 series remain accurate under these conditions.

6 Wide frequency band of DC and 0.1 Hz to 100 kHz


Thanks to a wide-band capability extending from DC and 0.1 Hz to 100 kHz, the PW3336/PW3337 can cover not only inverters' fundamental frequency band, but also the carrier frequency band.

Integrating fluctuating power values

The power consumption of equipment subject to a fluctuating load, for example refrigerators, heaters, and pumps, varies considerably between rated operation and no-load operation. Thanks to its broad dynamic range, the PW3336/PW3337 can perform integrated power measurement with guaranteed accuracy using a single range, even if the power fluctuates dramatically during integration. Measurements can accommodate waveform peaks of up to 600% of the range rating.

Advanced functions

Extensive built-in features including harmonic measurement, current sensor input, synchronized control, and a wide selection of interfaces

The PW3336/PW3337 ships standard with all the functionality you need for measurement. Choose from a total of eight models depending on whether your application requires support for GP-IB communications and D/A output.

Standard functionality by model

: Built-in function — : Function not available

Model	No. of channels	Harmonic measurement	Current sensor input	Synchronized control	LAN	RS-232C	GP-IB	D/A output
PW3336		•	•	•	•	•	_	_
PW3336-01	0	•	•	•	•	•	•	_
PW3336-02	2	•	•	•	•	•	_	•
PW3336-03		•	•	•	•	•	•	•
PW3337		•	•	•	•	•	_	_
PW3337-01	2	•	•	•	•	•	•	_
PW3337-02	3	•	•	•	•	•	_	•
PW3337-03		•	•	•	•	•	•	•

IEC61000-4-7 compliant harmonic measurement

The PW3336/PW3337 supports measurement that complies with IEC 61000-4-7:2002, the international standard governing harmonic measurement.

The power meters can measure voltage, current, and power harmonics up to the 50th order depending on the fundamental frequency, including total harmonic distortion (THD), fundamental wave component, harmonic level, phase difference, content percentage, and other parameters for each order. Since you can cap the number of orders for which harmonic analysis is performed to any order from the 2nd to the 50th, you can make standard-compliant calculations, even if the standard defines an upper limit order for THD calculations.

D About IEC 61000-4-7

IEC 61000-4-7 is an international standard governing the measurement of harmonic current and harmonic voltage in power supply systems as well as harmonic current emitted from devices. It defines the performance of standard instruments used to make such measurements.

Large selection of interfaces

The PW3336/PW3337's interfaces can be used to control the instrument and to capture its data - simply download the free PC application from the HIOKI website*. Functionality supported via LAN connections includes power meter configuration, measured value monitoring, waveform monitoring, display of time-series recordings, and capturing data at intervals.

PW3336-03 PW3337-03

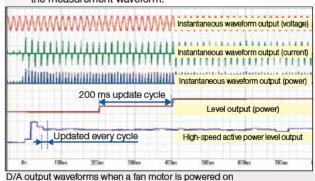
*Available soon.

4 16-channel D/A output (-02, -03)

D/A output-equipped instruments can generate voltage output for measured values and integrated power with their 16-bit D/A converter. By connecting an external data logger, HIOKI Memory HiCorder, recorder, or other device, you can simultaneously record data along with temperature and other non-power signals. The PW3336/PW3337 also offers the first active power level output on a cycle-by-cycle basis of any instrument in its class.

Three types of D/A output (switchable)

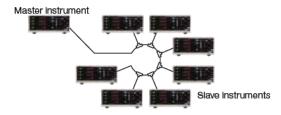
Instantaneous waveform output
Output voltage, current, or


power instantaneous waveforms. (Sampling speed: Approx. 87.5 kHz) Level output

Output voltage, current, power,

and other selected parameters with an update cycle of approximately 200 ms.

High-speed active power level output


Generate level output for the active power for each cycle of the measurement waveform.

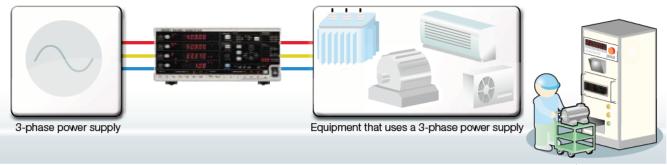
5 Synchronized control using up to 8 instruments

Eight units of PW3336/PW3337 can be connected and their measurements fully synchronized. That means you can have up to 24 channels of simultaneous calculations, display updates, data updates, integration control, display hold timing, and zero-adjustment. In addition, the master-slave configuration allows you to key lock all slave devices with the master unit, mirroring the master unit's operations and modes on all of the other power meters. The free PC application* can be used to calculate efficiency values across multiple units.

*Available soon for download from the HIOKI website.

6 Current sensor connectivity

The PW3336/PW3337 can also measure devices that exceed 65 A with the use of an optional current sensor. Measurements with guaranteed accuracy can be performed for currents of up to 5,000 A AC. Choose from a range of high-accuracy, clamp or passthrough AC/DC current sensors and models specifically designed for 50/60 Hz measurement.

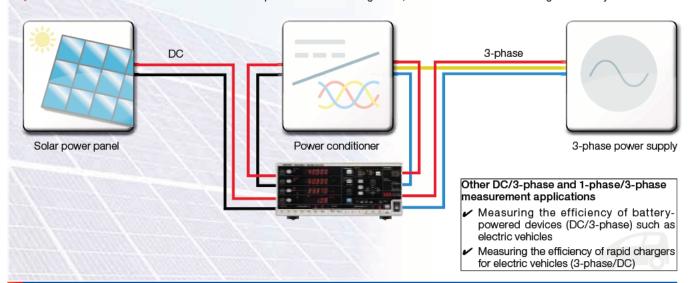


Applications

Research, development, and testing of equipment with 3-phase power supplies such as transformers, motors, air-conditioners, and heavy machinery

Key advantages

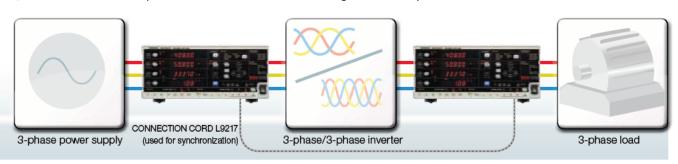
- ✓ Measure 3-phase 3-wire and 3-phase 4-wire* lines with a basic measurement accuracy of ±0.15% rdg.
- ✓ Perform high-current measurement of 65 A with direct input without accuracy degradation caused by shunt resistor self-heating.
- ✓ Built-in IEC 61000-4-7 compliant harmonic measurement functionality as well as current sensor input terminals and a LAN interface.
- ✓ Accuracy is guaranteed for active power measurement from 0 W, as well as for measurement of integrated power for loads with large fluctuations.
- ✓ Measure active power at a high level of accuracy even with low power factors, for example during no-load operation testing of transformers.



*3-phase 4-wire measurement: PW3337 series only

Measuring the efficiency of power conditioners used in solar power installations

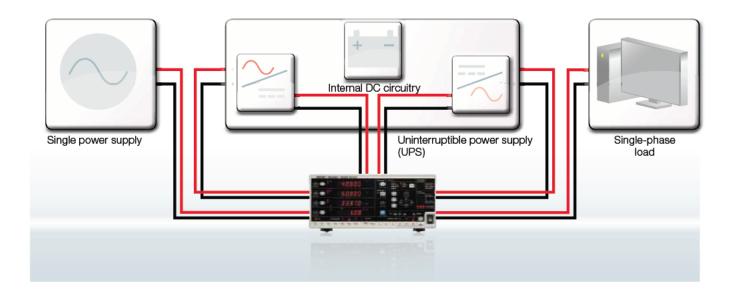
Key advantages


- ✓ Measure primary-side DC and secondary-side 3-phase output with a single PW3337, using the optimal range for each.
- ✓ Calculate efficiency: Perform output/input calculations and easily identify the resulting efficiency on the power meter's screen.
- Ripple rate calculation: Display the ratio of the AC component that is superposed on a DC line.
- ✓ Built-in current sensor input terminals: Measure currents exceeding 65 A with an optional current sensor.
- ✓ Harmonic measurement: Test for harmonic components such as voltage THD, which can be a concern with grid-linked systems.

Measuring power supply devices such as 3-phase/3-phase inverters

Key advantages

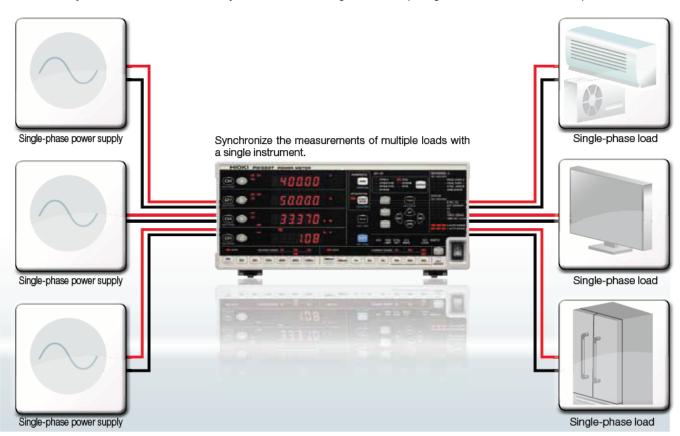
- Connect multiple instruments to synchronize their operation, including display updates, data updates, and start of integration.
- Measure all data with simultaneous parallel processing, including RMS values, mean values, fundamental wave components, THD, and harmonic components.
- ✓ Wide frequency band from DC and 0.1 Hz to 100 kHz: Enjoy coverage for the inverter secondary-side frequency band.
- ✓ Built-in current sensor input terminals: Measure currents exceeding 65 A with an optional current sensor.



Applications

Measuring the primary-side, internal circuitry, and secondary-side power consumption in uninterruptible power supplies (UPS)

Key advantages


- ✓ Set individual ranges and measurement types for each channel. Measure power consumption at each stage of the UPS.
- ✓ Hold waveform peak values and measured value maximum and minimum values.
- Measure all data with simultaneous parallel processing, including RMS values, mean values, fundamental wave components, THD, and harmonic components.

5 Simultaneous measurement of multiple loads

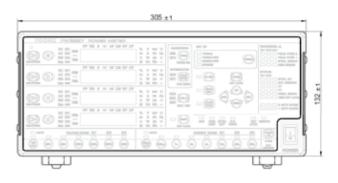
Key advantages

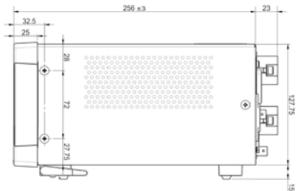
- Set individual ranges and measurement types for each channel. Measure power consumption at each stage of an uninterruptible power supply.
- ✓ Perform integrated measurement of widely fluctuating power signals without changing the range useful during long-term integrated power evaluation tests.
- ✓ Use the synchronized control function to sync measurement timing and start/stop integration across a maximum of 8 power meters.

Software

PW3336/PW3337 Communicator

The PW3336/PW3337 Communicator connects with the power meters via the LAN, RS-232C, or GP-IB (-01, -03) interface, and is available for free download from the HIOKI website*. Functionality includes configuring instruments, capturing interval data, performing numerical calculations based on measurement data, calculating efficiency values across multiple units, displaying 10 or more measurement parameters, and displaying waveforms.


Total Designation of Commence of Commence


*Available soon.

LabVIEW Driver

Use LabVIEW* to collect data and integrate the power meter into existing systems. (Available soon) *LabVIEW is a trademark of National Instruments Corporation.

Dimensional drawings

(Unit: mm)

Specifications

Input Specifications

input Specifica	uO	115					
Measurement	PW	/3336 series					
line type		Single-phase 2-wire (1P					
		Single-phase 3-wire (1P					
	l	Three-phase 3-wire (3P3	3W, 3P3W2	2M)			
	l	Wiring	CH1	CH2			
	l	1P2Wx2	1P2W	1P2W			
	l	1P3W	1P	3W			
	l	3P3W	3P	3W			
	l	3P3W2M	3P3\	W2M			
	PΜ	/3337 series					
		Single-phase 2-wire (1P	2W),				
		Single-phase 3-wire (1P					
		Three-phase 3-wire (3P3		M, 3V3A, 3	3P3W3M),		
	l	Three-phase 4-wire (3P4					
	l	Wiring	CH1	CH2	CH3		
	l	1P2W×3	1P2W	1P2W	1P2W		
	l	1P3W&1P2W		3W	1P2W		
	l	3P3W&1P2W	3P	3W	1P2W		
	l	3P3W2M	3P3\	N2M			
	l	3V3A		3V3A			
	l	3P3W3M		3P3W3M			
	l	3P4W		3P4W			
Input methods	Vol	tage Isolated input, res	sistance vol	tage divisio	n method	<u> </u>	
ii pat motrodo		rrent Isolated Input, DC				ent sensors	
Valtore	A1.1	TO/ 15 W/ 20 W/ 60 W/ 10	FO 1// 200 1	// POO 1// 4	000 1/		
Voltage measurement ranges		AUTO/ 15 V/ 30 V/ 60 V/ 150 V/ 300 V/ 600 V/ 1,000 V (set for each wiring mode)					
Current	,	,,					
measurement ranges	AUTO/ 200 mA/ 500 mA/ 1 A/ 2 A/ 5 A/ 10 A/ 20 A/ 50 A (set for each wiring mode)						
modulation transpos	For more information about external current sensor input.						
	see the external current sensor input specifications						
Power ranges		pends on the combina 0000W to 150.00kW (also			current rar	nges; trom	
Input resistance	Vol	tage input terminal	: 2 MΩ±	0.04 MΩ			
(50/60 Hz)		rrent direct input termina					
	_						

Basic Measurement Specifications

	Simultaneous voltage and current digital sampling, zero-cross simultaneous calculation
Sampling frequency	Approx. 700 kHz
A/D converter resolution	16-bit

Frequency bands	DC, 0.1 Hz to 100 kHz							
Synchronization	U1, U2, U3, I1, I2, I3, DC (fixed at 200 ms)							
sources	Can be set separately for each wiring mode.							
Measurement items	Nottage Current Reactive power - Power factor Efficiency Current Integration Voltage waveform peak value Voltage crest factor Time average current Voltage ripple factor Harmonic parameters: Harmonic active power Total harmonic current distortion Current fundamental waveform Current fundamental waveform Power factor Phase angle Phase angle Prequency Current fundamental current RwS value Total harmonic voltage distortion Voltage current phase difference Interchannel ourrent fundamental wave phase difference Harmonic voltage content % Harmonic voltage ourrent phase angle Harmonic voltage quirent phase difference Harmonic voltage ourrent fundamental varence Harmonic voltage ourrent phase difference Harmonic voltage ourrent phase difference							
Rectifiers	AC+DC : AC+DC measurement Display of true RMS values for both voltage and current AC+DC Umn : AC+DC measurement Display of average value rectified RMS converted values for voltage and true RMS values for current DC : DC measurement Display of simple averages for both voltage and current Display of values calculated by (voltage DC value)× (current DC value) for active power AC : AC measurement Display of values calculated by for both voltage and current Display of values calculated by √(AC+DC value)²² - (DC value)²² for active power FND Extraction and display of the fundamental wave component from harmonic measurement							
Zero-Crossing Filter	500 Hz/200 kHz 500 Hz: 0.1 Hz to 500 Hz, 200 kHz: 0.1 Hz to 200 kHz							
Maximum effective peak voltage	±600% of each voltage range However, for 300 V, 600 V, and 1,000 V ranges, ±1,500 Vpeak							
Maximum effective peak current	±600% of each current range However, for 20 A range and 50 A range, ±100 Apeak							

	ent accuracy				
Voltage	uency (f)	Input < 50% f.s.	50%f.s. ≤ Inpu	t ~ 100%f c	100%f.s. ≤ Input
	DC	±0.1%rdg. ±0.1%f.s.	±0.1%rdg.		±0.2%rdg.
0.1Hz :	≤f<16Hz	±0.1%rdg. ±0.2%f.s.	±0.3%		±0.3%rdg.
	s f < 45Hz	±0.1%rdg. ±0.1%f.s.	±0.2%		±0.2%rdg.
45Hz ₃	sf <u>s</u> 66Hz	±0.1%rdg. ±0.05%f.s.	±0.159		±0.15%rdg.
66Hz <	f ≤ 500Hz	±0.1%rdg. ±0.1%f.s.	±0.2%	6rdg.	±0.2%rdg.
500Hz <	<f≤10khz< td=""><td>±0.1%rdg. ±0.2%f.s.</td><td>±0.3%</td><td>6rdg.</td><td>±0.3%rdg.</td></f≤10khz<>	±0.1%rdg. ±0.2%f.s.	±0.3%	6rdg.	±0.3%rdg.
10kHz <	<f≤50khz< td=""><td>±0.5%rdg. ±0.3%f.s.</td><td>±0.8%</td><td>irdg.</td><td>±0.8%rdg.</td></f≤50khz<>	±0.5%rdg. ±0.3%f.s.	±0.8%	irdg.	±0.8%rdg.
50kHz <	f≤100kHz	±2.1%rdg. ±0.3%f.s.	±2.4%	6rdg.	±2.4%rdg.
Current (c	direct input)				
Frequ	uency (f)	Input < 50% f.s.	50%f.s. ≤ Inpu	ıt < 100%f.s.	100%f.s. ≤ Input
	DC	±0.1%rdg. ±0.1%f.s.	±0.1%rdg.	±0.1%f.s.	±0.2%rdg.
	∡f<16Hz	±0.1%rdg. ±0.2%f.s.	±0.3%	6rdg.	±0.3%rdg.
	s f < 45Hz	±0.1%rdg. ±0.1%f.s.	±0.2%	6rdg.	±0.2%rdg.
	sf <u>s</u> 66Hz	±0.1%rdg. ±0.05%f.s.	±0.159		±0.15%rdg.
	f ≤ 500Hz	±0.1%rdg. ±0.1%f.s.	±0.2%		±0.2%rdg.
	<f≤1khz< td=""><td>±0.1%rdg. ±0.2%f.s.</td><td>±0.3%</td><td></td><td>±0.3%rdg.</td></f≤1khz<>	±0.1%rdg. ±0.2%f.s.	±0.3%		±0.3%rdg.
1kHz <	f≤10kHz	±(0.03+0.07×F)%rdg. ±0.2%f.s.	±(0.23+0.0	7×F)%rdg.	±(0.23+0.07×F)%rdg.
10kHz <	f ≤ 100kHz	±(0.3+0.04×F)%rdg.	±(0.6+0.04	vFl%rda	±(0.6+0.04×F)%rdg.
IONIZ	I S TOON IZ	±0.3%f.s.	Щ0.010.04	xi)/blug.	±(0.010.04x1)/610g.
Active po	wer				
	uency (f)	Input < 50% f.s.	50%f.s. ≤ Inpu	ıt < 1ΩΩ%f ∘	100%f.s. ≤ Input
	DC	±0.1%rdg. ±0.1%f.s.	±0.1%rdg.		±0.2%rdg.
	sf<16Hz	±0.1%rdg. ±0.1%f.s.	±0.1761dg.		±0.2%rdg.
	s f < 45Hz	±0.1%rdg. ±0.1%f.s.	±0.2%		±0.2%rdg.
	sf ≤ 66Hz	±0.1%rdg. ±0.05%f.s.	±0.159		±0.15%rdg.
	f ≤ 500Hz	±0.1%rdg. ±0.1%f.s.	±0.2%		±0.2%rdg.
	<f≤1khz< td=""><td>±0.1%rdg. ±0.2%f.s.</td><td>±0.3%</td><td></td><td>±0.3%rdg.</td></f≤1khz<>	±0.1%rdg. ±0.2%f.s.	±0.3%		±0.3%rdg.
	f≤10kHz	±(0.03+0.07×F)%rdg.	±(0.23+0.0		±(0.23+0.07×F)%rdg.
		±0.2%f.s.	`	, ,	, , ,
10kHz <	<f≤50khz< td=""><td>±(0.07×F)%rdg. ±0.3%f.s.</td><td>±(0.3+0.07</td><td>×F)%rdg.</td><td>±(0.3+0.07×F)%rdg.</td></f≤50khz<>	±(0.07×F)%rdg. ±0.3%f.s.	±(0.3+0.07	×F)%rdg.	±(0.3+0.07×F)%rdg.
50kHz <	f≤100kHz	±(0.6+0.07×F)%rdg. ±0.3%f.s.	±(0.9+0.07	×F)%rdg.	±(0.9+0.07×F)%rdg.
		 Values for f.s. depend "F" in the tables refers 			
		 Add ±1mA to DC mea 	surement ac	curacy for o	current.
		 Add (±1mA) × (voltage real 	ad value) to DC	measuremen	t accuracy for active power. d ±0.1% rdg. to current
		and active power for w	nA or 500m.⊬ hich 1kHz<1	∖range,ao f10kHz	a ±0.1% rag. to current
		 Values for voltage, cur 			or which
		0.1Hz ≤ f < 10Hz are fo			
		 Values for voltage, cur 	rent, and act	ive power ir	n excess of 200V or 20A
		for which 10Hz ≤ f < 16	3Hz are for re	ference only	y.
			SHz are for re active power	ference only in excess o	y.
		for which 10Hz ≤ f < 16 Values for current and 500Hz < f ≤ 50kHz are Values for current and	SHz are for re active power for reference active power	ference only in excess only. only. In excess o	y. of 20A for which
		for which 10Hz ≤ f < 16 Values for current and 500Hz < f ≤ 50kHz are Values for current and 50kHz < f ≤ 100kHz are	SHz are for re active power for reference active power e for reference	ference only in excess of only. in excess of e only.	y. of 20A for which of 15A for which
		for which 10Hz ≤ f < 16 Values for current and 500Hz < f ≤ 50kHz are Values for current and 50kHz < f ≤ 100kHz are Values for voltage and	SHz are for re active power for reference active power e for reference active power	ference only in excess of only. in excess of e only. r in excess of	y. of 20A for which of 15A for which
Guaranteed a	ccuracy period	for which 10Hz ≤ f < 16 • Values for current and 500Hz < f ≤ 50kHz are Values for current and 50kHz < f ≤ 100kHz are • Values for voltage and 30kHz < f ≤ 100kHz ar	SHz are for re active power for reference active power e for reference active power	ference only in excess of only. in excess of e only. r in excess of	y. of 20A for which of 15A for which
Guaranteed a	occuracy period	for which 10Hz ≤ f < 16 Values for current and 500Hz < f ≤ 50kHz are Values for current and 50kHz < f ≤ 100kHz are Values for voltage and	SHz are for re active power for reference active power e for reference active power e for reference	ference only in excess of only. in excess of e only, r in excess of e only. r in excess of e only.	y. of 20A for which of 15A for which of 750V for which
Conditions		for which 10Hz ≤ f < 16 • Values for current and 500Hz < f ≤ 50kHz are • Values for current and 50kHz < f ≤ 100kHz ar • Values for voltage and 30kHz < f ≤ 100kHz ar 1 year Temperature and humidity Warm-up time	SHz are for re active power for reference active power active power for reference active power for reference : 23°C ±5°C : 30 minutes	ference only in excess of only. in excess of only. in excess of e only.	y, of 20A for which of 15A for which of 750V for which or less
Conditions	s of	for which 10Hz ≤ f < 16 • Values for current and 500Hz < f ≤ 50kHz are • Values for current and 50kHz < f ≤ 100kHz are • Values for voltage and 30kHz < f ≤ 100kHz ar 1 year Temperature and humidity	SHz are for re active power for reference active power e for reference active power e for reference : 23°C ±5°C : 30 mlnutes : Sine wave	ference only in excess of only. in excess of e only. r in excess of e only. r in excess of e only. s, 60% RH of input, power	y, of 20A for which of 15A for which of 750V for which or less er factor of 1,
Conditions	s of	for which 10Hz ≤ f < 16 • Values for current and 500Hz < f ≤ 50kHz are • Values for current and 50kHz < f ≤ 100kHz ar • Values for voltage and 30kHz < f ≤ 100kHz ar 1 year Temperature and humidity Warm-up time	6Hz are for re active power for reference active power e for reference active power e for reference : 23°C ±5°C : 30 minutes : Sine wave terminal-to	ference only in excess of only. in excess of e only.	y. of 20A for which of 15A for which of 750V for which or less er factor of 1, tage of 0V, after zero
Conditions	s of	for which 10Hz ≤ f < 16 • Values for current and 500Hz < f ≤ 50kHz are • Values for current and 50kHz < f ≤ 100kHz ar • Values for voltage and 30kHz < f ≤ 100kHz ar 1 year Temperature and humidity Warm-up time	6Hz are for re active power for reference active power e for reference active power e for reference : 23°C ±5°C : 30 mInutes : Sine wave terminal-to adjustment;	ference only in excess of only. In excess of e only	y, of 20A for which of 15A for which of 750V for which or less er factor of 1,
Conditions guarantee	of d accuracy characteristic	for which 10Hz ≤ f < 16 • Values for current and 500Hz < f ≤ 50kHz are • Values for current and 50kHz < f ≤ 50kHz are • Values for current and 50kHz < f ≤ 100kHz ard 30kHz < f ≤ 100kHz ard 1 year Temperature and humidity Warm-up time Input ±0.03% f.s. per °C or le	SHz are for re active power for reference active power e for reference active power e for reference: 23°C ±5°C: 30 minutes: Sine wave terminal-to adjustment; wave satisfiess	ference only in excess of only. In excess of only. In excess of e only.	y. of 20A for which of 15A for which of 750V for which or less or factor of 1, tage of 0V, after zero e in which the fundamental ization source conditions
Conditions guarantee	s of d accuracy	for which 10Hz ≤ f < 16 • Values for current and 500Hz < f ≈ 50kHz are • Values for current and 50kHz < f ≤ 100kHz are • Values for voltage and 30kHz < f ≤ 100kHz ard 1 year Temperature and humidity Warm-up time Input ±0.03% f.s. per °C or ie ±0.1% f.s. or less (45 tc	SHz are for reactive power cartive power e for reference active power e for reference in the formal in the	ference only in excess (a only. only	y. of 20A for which of 15A for which of 750V for which or less or factor of 1, tage of 0V, after zero in which the fundamental ization source conditions = 0)
Conditions guaranteed Temperature Power face	s of d accuracy characteristic ctor effects	for which 10Hz ≤ f < 16 • Values for current and 500Hz < f ≈ 50kHz are • Values for current and 50kHz < f ≤ 100kHz are • Values for voltage and 30kHz < f ≤ 100kHz ar 1 year Temperature and humidity Warm-up time Input ±0.03% f.s. per °C or le ±0.1% f.s. or less (45 to Internal circuitry voltages)	SHz are for re active power care for reference active power e for reference active power e for reference: 23°C ±5°C: 30 minutes: Sine wave satisfies be 66 Hz, at pt/current phase	ference only in excess (a only, a in excess (a only, a	y. of 20A for which of 15A for which of 750V for which or less er factor of 1, tage of 0V, after zero in which the fundamental lization source conditions = 0) ex ±0.0573°
Conditions guaranteed Temperature Power fact Effect of c	s of d accuracy characteristic stor effects	for which 10Hz ≤ f < 16 • Values for current and 500Hz < f ≤ 50kHz are • Values for current and 50kHz < f ≤ 100kHz are • Values for current and 50kHz < f ≤ 100kHz ar • Values for voltage and 30kHz < f ≤ 100kHz ar 1 year Temperature and humidity Warm-up time Input ±0.03% f.s. per °C or le ±0.1% f.s. or less (45 tc Internal circuitry voltage ±0.02% f.s. or less (60	SHz are for re active power care for reference active power e for reference active power e for reference: 23°C ±5°C: 30 minutes: Sine wave satisfies be 66 Hz, at pt/current phase	ference only in excess (a only, a in excess (a only, a	y. of 20A for which of 15A for which of 750V for which or less or factor of 1, tage of 0V, after zero in which the fundamental ization source conditions = 0)
Temperature Power fact Effect of c mode volt	s of d accuracy characteristic stor effects common lage	for which 10Hz ≤ f < 16 • Values for current and 500Hz < f ≤ 50kHz are • Values for current and 50kHz < f ≤ 100kHz are • Values for current and 30kHz < f ≤ 100kHz ard 1 year 2±0.03% f.s. per °C or le ±0.1% f.s. or less (45 tc) 1 tnternal circultry voltage ±0.02% f.s. or less (60 and enclosure)	SHz are for reactive power active power of or reference active power e for reference: 23°C ±5°C: 30 minutes: 30 minutes: Sine wave terminal-to adjustment; wave satisfiess 0 66 Hz, at po/current phase 0 V, 50/60 H	ference only in excess (a only, a in excess (a only, a	y. of 20A for which of 15A for which of 750V for which or less er factor of 1, tage of 0V, after zero in which the fundamental lization source conditions = 0) ex ±0.0573°
Conditions guaranteed Temperature Power fact Effect of c	s of d accuracy characteristic stor effects common tage	for which 10Hz ≤ f < 16 • Values for current and 500Hz < f ≤ 50kHz are • Values for current and 50kHz < f ≤ 100kHz are • Values for current and 50kHz < f ≤ 100kHz ar • Values for voltage and 30kHz < f ≤ 100kHz ar 1 year Temperature and humidity Warm-up time Input ±0.03% f.s. per °C or le ±0.1% f.s. or less (45 tc Internal circuitry voltage ±0.02% f.s. or less (60	SHz are for reactive power cartive power of or reference active power of or reference active power of or reference cartive power of or reference cartive power of or reference cartive power of c	ference only in excess (a only, a in excess (a only, a	y. of 20A for which of 15A for which of 750V for which or less er factor of 1, tage of 0V, after zero in which the fundamental lization source conditions = 0) ex ±0.0573°
Temperature Power face Effect of comode volt Effect of e	s of d accuracy characteristic stor effects common age external field	for which 10Hz ≤ f < 16 • Values for current and 500Hz < f ≤ 50kHz are • Values for current and 50kHz < f ≤ 100kHz are • Values for current and 30kHz < f ≤ 100kHz ar 1 year 2±0.03% f.s. per °C or le ±0.1% f.s. or less (45 tt Internal circuitry voltage ±0.02% f.s. or less (80 and enclosure) 400 A/m, DC and 50/6(Voltage 2±1.5% f. Current 2±1.5% f. Current 2±1.5% f.	SHz are for reactive power cartive power e for reference active power e for reference: 23°C ±5°C: 30 minutes: Sine wave terminal-to adjustment; wave satisfies 0 K, at poyournent phase 0 V, 50/60 H O, 50 Hz magnetis. or ±10 m² s. or ±10 m² s. or ±10 m² s.	ference only in excess (a only, a line excess (a only, a line excess (a only, a line excess (a only, a line), a line excess (a	y, of 20A for which of 15A for which of 750V for which of 750V for which or less or factor of 1, tage of 0V, after zero e in which the fundamental ization source conditions = 0) ex ±0.0573° obetween input terminals
Temperature Power face Effect of comode volt Effect of emagnetic	s of d accuracy characteristic stor effects common age external field	for which 10Hz ≤ f < 16 • Values for current and 500Hz < f ≈ 500Hz are • Values for current and 500Hz < f ≈ 1000Hz are • Values for current and 500Hz < f ≈ 1000Hz are • Values for voltage and • Values for voltage and 1 year Temperature and humidity Warm-up time Input ±0.03% f.s. per °C or le ±0.1% f.s. or less (45 tc Internal circuitry voltage ±0.02% f.s. or less (60 and enclosure) 400 A/m, DC and 50/61 Voltage ±1.5% f. Current ±1.5% f. Active power :±3.0% f.	SHz are for reactive power active power for reference active power e for reference active power e for reference: 23°C ±5°C: 30 minutes: Sine wave terminal-to adjustment; wave satisfies 66 Hz, at power pow	ference only in excess (a only, a in excess (a only, a	y, of 20A for which of 15A for which of 750V for which or less or factor of 1, tage of 0V, after zero e in which the fundamental ization source conditions = 0) ex ±0.0573° obetween input terminals
Temperature Power fac Effect of c mode volt Effect of e magnetic interference	characteristic characteristic stor effects common lage external field	for which 10Hz ≤ f < 16 • Values for current and 500Hz < f ≈ 50kHz are • Values for current and 50kHz < f ≈ 100kHz are • Values for voltage and 30kHz < f ≈ 100kHz are 1 year Temperature and humidity Warm-up time Input ±0.03% f.s. per °C or le ±0.1% f.s. or less (45 te Internal circuitry voltage ±0.02% f.s. or less (80 and enclosure) 400 A/m, DC and 50/6 Voltage :±1.5% f. Current :±1.5% f. Active power :±3.0% f. Whichewi	SHz are for reactive power cartive power e for reference active power e for reference active power e for reference in the second of the second	ference only in excess (a conty). If nexcess (a conty), if nexcess	y. of 20A for which of 15A for which of 750V for which or less or factor of 1, tage of 0V, after zero in which the fundamental ization source conditions = 0) or ±0.0573° oetween input terminals or is greater, or less juantity) × (±10 mA),
Temperature Power fac Effect of commode volt Effect on the magnetic interference Magnetiza	s of d accuracy characteristic stor effects common age external field be	for which 10Hz ≤ f < 16 • Values for current and 500Hz < f ≤ 50kHz are • Values for current and 50kHz < f ≤ 100kHz are • Values for voltage and 30kHz < f ≤ 100kHz ar 1 year Temperature and humidity Warm-up time Input ±0.03% f.s. per °C or le ±0.1% f.s. or less (45 te Internal circuitry voltage ±0.02% f.s. or less (60 and enclosure) 400 A/m, DC and 50/6 Voltage :±1.5% f. Current :±1.5% f. Active power :±3.0% f. whichev ±10 mA equivalent or less [af]	SHz are for reactive power cartive power e for reference active power e for reference active power e for reference cattive power e for reference cattive power experience for reference cattive power terminal-to adjustment; was satisfied to 66 Hz, at power pow	ference only in excess (a conty). If nexcess (a conty), if nexcess	y. of 20A for which of 15A for which of 750V for which or less or factor of 1, tage of 0V, after zero in which the fundamental ization source conditions = 0) o: ±0.0573° oetween input terminals r is greater, or less juantity) × (±10 mA), urrent direct input terminals
Temperature Power fac Effect of c mode volt Effect or e magnetic interference Magnetiz Adjacent char	s of d accuracy characteristic stor effects common age external field be	for which 10Hz ≤ f < 16 • Values for current and 500Hz < f ≈ 50kHz are • Values for current and 50kHz < f ≈ 100kHz are • Values for voltage and 30kHz < f ≈ 100kHz ard 1 year Temperature and humidity Warm-up time Input ±0.03% f.s. per °C or le ±0.1% f.s. or less (45 te Internal circuitry voltage ±0.02% f.s. or less (60 and enclosure) 400 A/m, DC and 50/6 Voltage :±1.5% f. Active power :±3.0% f. Whichev ±10 mA equivalent or les (af ±10 mA equivalent or les (af ±10 mA equivalent or les)	SHz are for reactive power cartive power e for reference active power e for reference active power e for reference : 23°C ±5°C : 30 minutes terminal-to adjustment; was satisfied to 66 Hz, at power p	ference only in excess (a conty). In excess (a conty). If nexcess (a conty), if nexcess	y. of 20A for which of 15A for which of 750V for which or less or factor of 1, tage of 0V, after zero in which the fundamental ization source conditions = 0) or ±0.0573° oetween input terminals or is greater, or less uantity) × (±10 mA), urrent direct input terminals) to adjacent channel)
Temperature Power fac Effect of c mode volt Effect of c magnetic interference Magnetize Adjacent char Voltage	s of d accuracy characteristic stor effects common age external field be attion effect mel input effect // Curren	for which 10Hz ≤ f < 16 • Values for current and 500Hz < f ≈ 500Hz are • Values for current and 500Hz < f ≈ 100kHz are • Values for voltage and 30kHz < f ≤ 100kHz ard 1 year Temperature and humidity Warm-up time Input ±0.03% f.s. per °C or le ±0.1% f.s. or less (45 te Internal circuitry voltage ±0.02% f.s. or less (80 and enclosure) 400 A/m, DC and 50/6 Voltage :±1.5% f. Current :±1.5% f. Active power set of the control of less (all ±10 mA equivalent or le	SHz are for reactive power active power of or reference of or	ference only in excess (a conty). If nexcess (a conty), if nexcess	y. of 20A for which of 15A for which of 750V for which or less or factor of 1, tage of 0V, after zero in which the fundamental ization source conditions = 0) or ±0.0573° oetween input terminals or is greater, or less uantity) × (±10 mA), urrent direct input terminals) to adjacent channel)
Temperature Power fac Effect of c mode volt Effect or e magnetic interference Magnetiz Adjacent char	s of d accuracy characteristic stor effects common age external field be attion effect mel input effect // Curren	for which 10Hz ≤ f < 16 • Values for current and 500Hz < f ≈ 50kHz are • Values for current and 50kHz < f ≈ 100kHz are • Values for voltage and 30kHz < f ≈ 100kHz ard 1 year Temperature and humidity Warm-up time Input ±0.03% f.s. per °C or le ±0.1% f.s. or less (45 te Internal circuitry voltage ±0.02% f.s. or less (60 and enclosure) 400 A/m, DC and 50/6 Voltage :±1.5% f. Active power :±3.0% f. Whichev ±10 mA equivalent or les (af ±10 mA equivalent or les (af ±10 mA equivalent or les)	SHz are for reactive power active power of or reference of or	ference only in excess (a conty). If nexcess (a conty), if nexcess	y. of 20A for which of 15A for which of 750V for which or less or factor of 1, tage of 0V, after zero in which the fundamental ization source conditions = 0) or ±0.0573° oetween input terminals or is greater, or less uantity) × (±10 mA), urrent direct input terminals) to adjacent channel)
Temperature Power fac Effect of c mode volt Effect of te magnetic interference Magnetize Adjacent char Voltage Measurer Effective in	s of d accuracy characteristic stor effects common age external field be atton effect and input effect / Curren nent types	for which 10Hz ≤ f < 16 • Values for current and 500Hz < f ≈ 50kHz are • Values for current and 50kHz < f ≤ 100kHz are • Values for voltage and 30kHz < f ≤ 100kHz ard 1 year Temperature and humidity Warm-up time Input ±0.03% f.s. per °C or le ±0.1% f.s. or less (45 te Internal circuitry voltage ±0.02% f.s. or less (60 and enclosure) 400 A/m, DC and 50/6 Voltage :±1.5% f. Active power is ±3.0% f. ±10 mA equivalent or lest ±10 mA equivalent or lest t/ Active Power if Rectiflers: AC+DC, DC, Voltage :1% to 1:	SHz are for reactive power cartive power e for reference active power e for reference active power e for reference active power e for reference cartive power e for reference cartive power et eminal-to adjustment; was satisfied to 66 Hz, at power	ference only in excess (a conty). In excess (a conty). If nexcess (a conty), if nexcess	y. of 20A for which of 15A for which of 750V for which or less or factor of 1, tage of 0V, after zero in which the fundamental ization source conditions = 0) o: ±0.0573° oetween input terminals r is greater, or less juantity) × (±10 mA), urrent direct input terminals) to adjacent channel) ocifications
Temperature Power fac Effect of c magnetic interference Magnetiza Adjacent char Voltage Measurem	s of d accuracy characteristic stor effects common age external field be atton effect and input effect / Curren nent types	for which 10Hz ≤ f < 16 • Values for current and 500Hz < f ≈ 500Hz are • Values for current and 500Hz < f ≈ 100KHz are • Values for current and 50KHz < f ≈ 100KHz ar • Values for voltage and 30KHz < f ≈ 100KHz ar 1 year Temperature and humidity Warm-up time input ±0.03% f.s. per °C or le ±0.1% f.s. or less (45 tc internal circultry voltage ±0.02% f.s. or less (90 and enclosure) 400 A/m, DC and 50/6 Voltage :±1.5% f. Current :±1.5% f. Current :±1.5% f. Active power :±3.0% f. ±10 mA equivalent or less (af ±10 mA equivalent or les (af ±10	SHz are for reactive power eactive power e for reference active power e for reference active power e for reference: 23°C ±5°C: 30 minutes: 30 minutes: Sine wave terminal-to adjustment; wave satisfies 0 V, 50/60 H O Hz magneti as or ±10 mA s. or jevotrage er leg greater, or (voltage er is funding 100 less (when inp Measuren AC, FND, AC 30% of range 0 V peak value	ference only in excess (a only, a only, a in excess (a only, a	y. of 20A for which of 15A for which of 750V for which or less or factor of 1, tage of 0V, after zero in which the fundamental ization source conditions = 0) o: ±0.0573° oetween input terminals r is greater, or less juantity) × (±10 mA), urrent direct input terminals) to adjacent channel) ocifications
Temperature Power fac Effect of c mode volte Effect of te magnetic interference Magnetize Adjacent char Voltage Measurer Effective in	s of d accuracy characteristic stor effects common age external field be atton effect and input effect / Curren nent types	for which 10Hz ≤ f < 16 • Values for current and 50KHz < f ≈ 50KHz are • Values for current and 50KHz < f ≈ 100KHz are • Values for current and 30KHz < f ≈ 100KHz ard 1 year Temperature and humidity Warm-up time Input ±0.03% f.s. per °C or le ±0.1% f.s. or less (45 te Internal circultry voltage ±0.02% f.s. or less (60 and enclosure) 400 A/m, DC and 50/6/ Voltage :±1.5% f. Current :±1.5% f.	SHz are for reactive power cartive power of or reference active power of or respective power of or or power of or p	ference only in excess (a only, a long). In excess (a only, a long), a long in excess (a long), a long in	y. of 20A for which of 15A for which of 750V for which or less or factor of 1, tage of 0V, after zero in which the fundamental ization source conditions = 0) o: ±0.0573° oetween input terminals r is greater, or less juantity) × (±10 mA), urrent direct input terminals) to adjacent channel) ocifications
Temperature Power fac Effect of c mode volte Effect of te magnetic interference Magnetize Adjacent char Voltage Measurer Effective in	s of d accuracy characteristic stor effects common age external field be atton effect and input effect / Curren nent types	for which 10Hz ≤ f < 16 • Values for current and 50Hz < f ≈ 50Hz are • Values for current and 50Hz < f ≈ 100Hz are • Values for current and 50Hz < f ≈ 100Hz are • Values for current and 30Hz < f ≤ 100Hz are 1 year Temperature and humidity Warm-up time input ±0.03% f.s. per °C or le ±0.1% f.s. or less (45 tc internal circuitry voltage ±0.02% f.s. or less (80 and enclosure) 400 A/m, DC and 50/6 Voltage :±1.5% f. Active power :±3.0% f. ### Active power I Rectfilers: AC+DC, DC, Voltage :19% to 1: (however, up to ±1,50 Current :19% to 1:	SHz are for reactive power eactive power of or reference active power e for reference active power e for reference active power e for reference side of the control of the	ference only in excess (a conty). In excess (a conty). If nexcess (a conty), if nexcess	y. of 20A for which of 15A for which of 750V for which or less or factor of 1, tage of 0V, after zero in which the fundamental ization source conditions = 0) or ±0.0573° oetween input terminals or is greater, or less uantity) × (±10 mA), urrent direct input terminals) to adjacent channel) ocifications
Temperature Power fac Effect of c mode vot Effect of e magnetic Interference Magnetiza Adjacent char Voltage Measurer Effective n range	characteristic stor effects common age external field see station effect mel input effect / Curren nent types neasuring	for which 10Hz ≤ f < 16 • Values for current and 50KHz < f ≈ 50KHz are • Values for current and 50KHz < f ≈ 100KHz are • Values for current and 50KHz < f ≤ 100KHz ard • Values for voltage and 30KHz < f ≤ 100KHz ard 1 year Temperature and humidity Warm-up time Input ±0.03% f.s. per °C or le ±0.1% f.s. or less (45 tc Internal circuitry voltage ±0.1% f.s. or less (60 and enclosure) 400 A/m, DC and 50/6 Voltage ±1.5% f. Current ±1.5% f. Current ±1.5% f. Current ±10 mA equivalent or le t/ Active Power I Rectillers: AC+DC, DC, Voltage : 1% to 1: chowever, up to ±1,500 Current : 1% to 1: Active power; defined whe effective measurement	SHz are for reactive power eactive power of or reference active power of or Novice of Orange of Orange of orange of orange of of the resulted active power of orange of of of range of of of range of of of range of of of range of of orange of orange of of orange of orange of orange of orange of orange of or orange of orange	in excess (a conty). In excess	y, of 20A for which of 15A for which of 15A for which of 750V for which or less or factor of 1, tage of 0V, after zero e in which the fundamental lization source conditions = 0) ex ±0.0573° coetween input terminals or is greater, or less quantity) × (±10 mA), urrent direct input terminals) to adjacent channel) ocifications
Temperature Power fac Effect of c mode volte Effect of te magnetic interference Magnetize Adjacent char Voltage Measurer Effective in	characteristic stor effects common age external field see station effect mel input effect / Curren nent types neasuring	for which 10Hz ≤ f < 16 • Values for current and 50KHz < f ≈ 50KHz are • Values for current and 50KHz < f ≈ 100KHz are • Values for voltage and • Values for voltage and 1 year Temperature and humidity Warm-up time Input ±0.03% f.s. per °C or le ±0.1% f.s. or less (45 tc Internal circuitry voltage ±0.02% f.s. or less (60 and enclosure) 400 A/m, DC and 50/6 Voltage ±1.5% f. Current :±1.5% f. Active power I. Rectifiers: AC+DC, DC, Voltage :1% to 1: (however, up to ±1,50) Current :1% to 1: Active power :0% to 1: Active power :0% to 1: (however, defined whe effective measuremen Voltage/ Current: 0.5%	SHz are for reactive power eactive power of or reference active power e for reference active power e for reference active power e for reference cative power e for reference cative power en for reference cative power en for reference cative power en for reference cative power some cative power some cative power is so of 66 Hz, at power to form the companion of the cative power is greater, and the collapse of the result and collapse cative power is greater, and collapse cative power is greater.	ference only in excess (a conty). In excess (a cont	y. of 20A for which of 15A for which of 750V for which or less or factor of 1, tage of 0V, after zero in which the fundamental ization source conditions = 0) or ±0.0573° oetween input terminals or is greater, or less uantity) × (±10 mA), urrent direct input terminals) to adjacent channel) ocifications
Temperature Power fac Effect of c mode vot Effect of e magnetic Interference Magnetiza Adjacent char Voltage Measurer Effective n range	characteristic stor effects common age external field see station effect mel input effect / Curren nent types neasuring	for which 10Hz ≤ f < 16 • Values for current and 50Hz < f ≈ 50Hz are • Values for current and 50Hz < f ≈ 100Hz are • Values for current and 50Hz < f ≈ 100Hz are • Values for current and 30Hz < f ≈ 100Hz are 1 year Temperature and humidity Warm-up time Input ±0.03% f.s. per °C or le ±0.1% f.s. or less (45 tc 10ternal circultry voltage ±0.02% f.s. or less (80 and enclosure) 400 A/m, DC and 50/6 Voltage ±1.5% f. Active power :±3.0% f. Active power :±1.5% f. Current ±10 mA equivalent or less (af ±10 mA equ	SHz are for reactive power eactive power or reference active power e for reference active power e for reference active power e for reference cative power e for reference some power e for reference e for reference e for reference e for voltage e for voltage e for power e for reference for	ference only in excess (a only, only	y. of 20A for which of 15A for which of 15A for which of 750V for which or less or factor of 1, tage of 0V, after zero in which the fundamental ization source conditions = 0) or ±0.0573° oetween input terminals or is greater, or less juantity) × (±10 mA), urrent direct input terminals to adjacent channel) or VRIMS value) of fall within the tession when less than 0.5% or zero-suppression)
Temperature Power fac Effect of c magnetic interference Magnetiza Adjacent char Voltage Measurer Effective n range Display rai	s of d accuracy characteristic stor effects common age external field cee atton effect mel input effect / Currennent types neasuring	for which 10Hz ≤ f < 16 • Values for current and 50KHz < f ≤ 50KHz are • Values for current and 50KHz < f ≤ 100KHz are • Values for current and 30KHz < f ≤ 100KHz ard 1 year Temperature and humidity Warm-up time Input ±0.03% f.s. per °C or le ±0.1% f.s. or less (45 tc Internal circuitry voltage ±0.1% f.s. or less (60 and enclosure) 400 A/m, DC and 50/60 Voltage := 1.5% f. Current := 1.5% f. Current := 1.5% f. Active power I Rectifiers: AC+DC, DC, Voltage := 1% to 1: (however, up to ±1,500 Current := 1% to 1: Active power := 0% to 1: (However, defined whe effective measuremen Voltage/ Current := 0.5% Active power := 0% to Vo	SHz are for reactive power eactive power of reference active power of the reference active power of the reference active power of the reference active power of reference active power of reference active power of reference active power of the re	ference only in excess (a only, a long), and a construction of the	y, of 20A for which of 15A for which of 15A for which of 750V for which or less or factor of 1, tage of 0V, after zero of n which the fundamental ization source conditions = 0) or ± ±0.0573° or tween input terminals or is greater, or less luantity) × (±10 mA), urrent direct input terminals) to adjacent channel) or is directions 0 V RMS value) or fall within the ession when less than 0.5%; zero-suppression) cutifier or (no polarity display) ower
Temperature Power fac Effect of c magnetic interference Magnetize Adjacent char Voltage Measurerr Effective n range Display ra	s of d accuracy characteristic stor effects common age external field one station effect mel input effect / Curren nent types neasuring	for which 10Hz ≤ f < 16 • Values for current and 50KHz < f ≤ 50KHz are • Values for current and 50KHz < f ≤ 100KHz are • Values for current and 50KHz < f ≤ 100KHz ard • Values for voltage and 30KHz < f ≤ 100KHz ard 1 year Temperature and humidity Warm-up time Input ±0.03% f.s. per °C or le ±0.1% f.s. or less (45 tc Internal circuitry voltage ±0.12% f.s. or less (60 and enclosure) 400 A/m, DC and 50/6 Voltage ±1.5% f. Current ±1.5% f. Current ±1.5% f. Current ±10 mA equivalent or le t/ Active power I Rectillers: AC+DC, DC, Voltage ±10 mA equivalent or le t/ Active power I Rectillers: AC+DC, DC, Voltage : 1% to 1: Active power voltage in Voltage/ Current	SHz are for reactive power eactive power of reference active power e for reference active power e for reference active power e for reference cative power e for reference cative power en for reference cative power en for reference cative power en for reference cative power satisfies so the formal cative power en for reference cative po	in excess (a conty). In excess	y, of 20A for which of 15A for which of 15A for which of 750V for which of 750V for which or less or factor of 1, tage of 0V, after zero e in which the fundamental lization source conditions = 0) ex ±0.0573° coetween input terminals or is greater, or less quantity) × (±10 mA), urrent direct input terminals) to adjacent channel) ecifications 0 V RMS value) of tall within the ession when less than 0.5% zero-suppression) citiler in (no polarity display) ower titon formulas
Temperature Power fac Effect of c magnetic interference Magnetize Adjacent char Voltage Measurer Effective in range Display ran Polarity Voltage/ (Williage/ (Williage	s of d accuracy characteristic stor effects common age external field be attion effect mel input effect o/ Curren ment types measuring nge	for which 10Hz ≤ f < 16 • Values for current and 50KHz < f ≈ 50KHz are • Values for current and 50KHz < f ≈ 100KHz are • Values for current and 30KHz < f ≈ 100KHz ard 1 year Temperature and humidity Warm-up time Input ±0.03% f.s. per °C or le ±0.1% f.s. or less (45 to Internal circultry voltage ±0.02% f.s. or less (60 and enclosure) 400 A/m, DC and 50/6/ Voltage ±10 mA equivalent or les (af to (b)	SHz are for reactive power eactive power of reference active power e for reference active power e for reference active power e for reference cative power e for reference cative power en for reference cative power en for reference cative power en for reference cative power satisfies so the formal cative power en for reference cative po	ference only in excess (a only, a long), and a construction of the	y, of 20A for which of 15A for which of 15A for which of 750V for which or less or factor of 1, tage of 0V, after zero of n which the fundamental ization source conditions = 0) or ± ±0.0573° or tween input terminals or is greater, or less luantity) × (±10 mA), urrent direct input terminals) to adjacent channel) or is directions 0 V RMS value) or fall within the ession when less than 0.5%; zero-suppression) cutifier or (no polarity display) ower
Temperature Power fac Effect of c magnetic interference Magnetize Adjacent char Voltage Measurerr Effective n range Display ra	characteristic otor effects common age otternal field on the light of the common age	for which 10Hz ≤ f < 14 • Values for current and 50KHz < f ≤ 50KHz are • Values for current and 50KHz < f ≤ 10KHz are • Values for current and 50KHz < f ≤ 10KHz are • Values for voltage and 30KHz < f ≤ 100KHz ar 1 year Temperature and humidity Warm-up time Input ±0.03% f.s. per °C or le ±0.1% f.s. or less (80 and enclosure) ±0.02% f.s. or less (80 and enclosure) ±0.02% f.s. or less (80 and enclosure) ±1.5% f. Active power :±1.5% f. Active power is ±1.5% f. Active power le t/ Active Power I Rectifiers: AC+DC, DC, Voltage :1% to 1: (however, up to ±1,50) Current :1,50 Curr	SHz are for reactive power eactive power e for reference active power e for reference active power e for reference active power e for reference is 30 minutes is 30 minute	in excess (a conty). In excess	y, of 20A for which of 15A for which of 15A for which of 750V for which of 750V for which or less or factor of 1, tage of 0V, after zero e in which the fundamental lization source conditions = 0) ex ±0.0573° coetween input terminals or is greater, or less quantity) × (±10 mA), urrent direct input terminals) to adjacent channel) ecifications 0 V RMS value) of tall within the ession when less than 0.5% zero-suppression) citiler in (no polarity display) ower titon formulas
Temperature Power fac Effect of c magnetic interference Magnetize Adjacent char Voltage Measurer Effective in range Display ran Polarity Voltage/ (Williage/ (Williage	characteristic stor effects common age with the common age with th	for which 10Hz ≤ f < 14 • Values for current and 50KHz < f ≤ 50KHz are • Values for current and 50KHz < f ≤ 10KHz are • Values for current and 50KHz < f ≤ 10KHz are • Values for voltage and 30KHz < f ≤ 100KHz ar 1 year Temperature and humidity Warm-up time Input ±0.03% f.s. per °C or le ±0.1% f.s. or less (80 and enclosure) ±0.02% f.s. or less (80 and enclosure) ±0.02% f.s. or less (80 and enclosure) ±1.5% f. Active power :±1.5% f. Active power is ±1.5% f. Active power le t/ Active Power I Rectifiers: AC+DC, DC, Voltage :1% to 1: (however, up to ±1,50) Current :1,50 Curr	SHz are for reactive power eactive power e for reference active power e for reference active power e for reference active power e for reference is 30 minutes is 30 minute	ference only in excess (a only, a only,	y, of 20A for which of 15A for which of 15A for which of 750V for which of 750V for which or less or factor of 1, tage of 0V, after zero e in which the fundamental lization source conditions = 0) ex ±0.0573° coetween input terminals or is greater, or less quantity) × (±10 mA), urrent direct input terminals) to adjacent channel) ecifications 0 V RMS value) of tall within the ession when less than 0.5% zero-suppression) citiler in (no polarity display) ower titon formulas
Temperature Power fac Effect of c mode volt Effect of te magnetic interference Magnetize Adjacent char Voltage Measurer Effective in range Display rai Polarity Voltage/ G Will channels	characteristic otor effects occurrent dispersion of the common age occurrent types neasuring occurrent dispersion of the common occurrent occurren	for which 10Hz ≤ f < 16 • Values for current and 50KHz < f ≈ 50KHz are • Values for current and 50KHz < f ≈ 100KHz are • Values for current and 30KHz < f ≈ 100KHz ard 1 year Temperature and humidity Warm-up time Input ±0.03% f.s. per °C or le ±0.1% f.s. or less (45 to Internal circultry voltage ±0.02% f.s. or less (60 and enclosure) 400 A/m, DC and 50/6/ Voltage ±10 mA equivalent or les (af to (b)	SHz are for reactive power eactive power e for reference active power e for reference active power e for reference active power e for reference is 30 minutes is 30 minute	ference only in excess (a only, a only,	y, of 20A for which of 15A for which of 15A for which of 750V for which of 750V for which or less ar factor of 1, tage of 0V, after zero o in which the fundamental ization source conditions = 0) ex ±0.0573° coetween input terminals obetween input terminals to adjacent channel) of its adjacent channel of the input terminals of VRMS value) O VRMS value) O VRMS value) of tall within the ession when less than 0.5% zero-suppression) citifier in (no polarity display) ower thon formulas (Active power)
Temperature Power face Effect of c mode vot Effect of e magnetic Interference Magnetize Adjacent char Voltage Measurem Effective n range Display rai Polarity Voltage/ 0 Will channels	characteristic stor effects common age station effect mel input affect / Current types neasuring nipe current/ At ring 1P3W 3P3W2M	for which 10Hz ≤ f < 16 • Values for current and 50Hz < f ≤ 50Hz are • Values for current and 50Hz < f ≤ 10KHz are • Values for current and 50Hz < f ≤ 10KHz are • Values for current and 50Hz < f ≤ 100KHz ar • Values for voltage and 30Hz < f ≤ 100KHz ar 1 year Temperature and humidity Warm-up time Input ±0.03% f.s. per °C or le ±0.1% f.s. or less (45 tc internal circultry voltage ±0.02% f.s. or less (80 and enclosure) 400 A/m, DC and 50/6 Voltage :±1.5% f. Active power :±3.0% f. whichev ±10 mA equivalent or less (af ±10 mA equival	SHz are for reactive power eactive power or reference active power e for reference active power e for reference active power e for reference cative power e for reference cative power e for reference cative power en for the cative for the formation of the formation of the reference cative cative cative cative cative power en formation or regulative. Power cative power en formation or regulative power cative power en formation or regulative.	ference only in excess (a only,	y, of 20A for which of 15A for which of 15A for which of 750V for which of 750V for which or less ar factor of 1, tage of 0V, after zero o in which the fundamental ization source conditions = 0) ex ±0.0573° coetween input terminals obetween input terminals to adjacent channel) of its adjacent channel of the input terminals of VRMS value) O VRMS value) O VRMS value) of tall within the ession when less than 0.5% zero-suppression) citifier in (no polarity display) ower thon formulas (Active power)
Temperature Power fac Effect of c mode volt Effect of te magnetic interference Magnetize Adjacent char Voltage Measurer Effective in range Display rai Polarity Voltage/ G Will channels	characteristic stor effects common age characteristic characteristic stor effects characteristic	for which 10Hz ≤ f < 14 • Values for current and 50KHz < f ≤ 50KHz are • Values for current and 50KHz < f ≤ 10KHz are • Values for current and 50KHz < f ≤ 10KHz are • Values for voltage and 30KHz < f ≤ 100KHz ar 1 year Temperature and humidity Warm-up time Input ±0.03% f.s. per °C or le ±0.1% f.s. or less (80 and enclosure) ±0.02% f.s. or less (80 and enclosure) ±0.02% f.s. or less (80 and enclosure) ±1.5% f. Active power :±1.5% f. Active power is ±1.5% f. Active power le t/ Active Power I Rectifiers: AC+DC, DC, Voltage :1% to 1: (however, up to ±1,50) Current :1,50 Curr	SHz are for reactive power eactive power or reference active power e for reference active power e for reference active power e for reference cative power e for reference cative power e for reference cative power en for the cative for the formation of the formation of the reference cative cative cative cative cative power en formation or regulative. Power cative power en formation or regulative power cative power en formation or regulative.	ference only in excess (a only, only	y, of 20A for which of 15A for which of 15A for which of 750V for which of 750V for which or less ar factor of 1, tage of 0V, after zero o in which the fundamental ization source conditions = 0) ex ±0.0573° coetween input terminals obetween input terminals to adjacent channel) of its adjacent channel of the input terminals of VRMS value) O VRMS value) O VRMS value) of tall within the ession when less than 0.5% zero-suppression) citifier in (no polarity display) ower thon formulas (Active power)
Temperature Power face Effect of c mode vot Effect of e magnetic Interference Magnetize Adjacent char Voltage Measurem Effective n range Display rai Polarity Voltage/ 0 Will channels	characteristic stor effects common age station effect mel input affect / Current types neasuring nipe current/ At ring 1P3W 3P3W2M	for which 10Hz ≤ f < 16 • Values for current and 50Hz < f ≤ 50Hz are • Values for current and 50Hz < f ≤ 10KHz are • Values for current and 50Hz < f ≤ 10KHz are • Values for current and 50Hz < f ≤ 100KHz ar • Values for voltage and 30Hz < f ≤ 100KHz ar 1 year Temperature and humidity Warm-up time Input ±0.03% f.s. per °C or le ±0.1% f.s. or less (45 tc internal circultry voltage ±0.02% f.s. or less (80 and enclosure) 400 A/m, DC and 50/6 Voltage :±1.5% f. Active power :±3.0% f. whichev ±10 mA equivalent or less (af ±10 mA equival	SHz are for reactive power eactive power or reference active power e for reference active power e for reference active power e for reference cative power e for reference cative power e for reference cative power en for the cative for the formation of the formation of the reference cative cative cative cative cative power en formation or regulative. Power cative power en formation or regulative power cative power en formation or regulative.	ference only in excess (a only, only	y. of 20A for which of 15A for which of 15A for which of 750V for which of 750V for which or less or factor of 1, tage of 0V, after zero in which the fundamental ization source conditions $= 0)$ $= \pm 0.0573^{\circ}$ coetween input terminals or is greater, or less uantity) × (±10 mA), urrent direct input terminals) to adjacent channel) or if fall within the ession when less than 0.5% zero-suppression) or iffier or (no polarity display) over tion formulas (Active power)

Power channel and sum value calculation formulas

Wiring		S : Apparent power	Q : Reactive power		
All channels	1P2W	$S(i) = U(i) \times I(i)$	$Q(i) = si(i)\sqrt{S(i)^2 - P(i)^2}$		
	1P3W	Ssum = S(1) + S(2)			
3P3W		$S_{sum} = \frac{\sqrt{3}}{3} (S_{(1)} + S_{(2)})$	Qsum = Q(1) + Q(2)		
Sum	3P3W2M	0 13 0 0 0	Qsum = Q(1) + Q(2)		
values	3V3A	Ssum = $\frac{\sqrt{3}}{3}$ (S(1) + S(2) + S(3))			
1	3P3W3M		0 0 0 0		
	3P4W	$S_{sum} = S_{(1)} + S_{(2)} + S_{(3)}$	$Q_{sum} = Q_{(1)} + Q_{(2)} + Q_{(3)}$		

(i): Measurement channel

Wir	ring	λ: Power factor	φ : Phase angle
All channels	1P2W	$\lambda(i) = \operatorname{si}(i) \left \frac{P(i)}{S(i)} \right $	$\phi_{(i)} = \operatorname{si}_{(i)} \cos^{-1} \lambda_{(i)} $
	1P3W		When Psum ≥ 0
	3P3W		Φsum = Sisum COS ⁻¹ λ sum
Sum	3P3W2M	λsum = Sisum Psum	(0° to ±90°)
values	3V3A	Seem	When P _{sum} ≥ 0
	3P3W3M		$\phi_{\text{sum}} = \text{sisum} \left 180 - \cos^{-1} \lambda_{\text{sum}} \right $ (±90° to ±180°)
	3P4W		(150 10 1700)

(1): Measurement channel; The polarity symbol slsum is acquired from the Qsum symbol.

Frequency Measurement Specifications

Number of measurement channels	3
Measurement source	Select from U (VHz) or I (AHz) by channel
Measurement method	Calculated from input waveform period (reciprocal method)
Measurement range	500 Hz/200 kHz (linked to zero-cross filter)
Measurement accuracy	±0.1% rdg. ±1 dgt. (0°C to 40°C)
Effective measuring range	0.1 Hz to 100 kHz For she wave input that is at least 20% of the measurement source's measurement range. Measurement lower limit frequency setting: 0.1 sec. / 1 sec. / 10 sec.
Display format	0.1000 Hz to 9.9999 Hz, 9.900 Hz to 99.999 Hz, 99.00 Hz to 999.99 Hz, 9,900 KHz to 9.9999 KHz, 9.900 KHz to 99.999 KHz, 99.00 KHz to 220.00 KHz

Apparent Power/ Reactive Power/ Power Factor/ Phase Angle Measurement Specifications

Measurement types	Rectifiers Apparent Power/ Reactive Power/ Power Factor : AC+DC, AC, FND, AC+DC Umn Phase Angle : AC, FND
Effective measuring range	As per voltage, current, and active power effective measurement ranges.
Display range	Apparent Power/ Reactive Power : 0% to 196% of the range (no zero-suppression) Power Factor : ±0.0000 to ±1.0000 Phase Angle : +180.00 to -180.00
Polarity	Reactive Power/ Power Factor/ Phase Angle Polarity is assigned according to the lead/lag relationship of the voltage waveform rising edge and the current waveform rising edge. + : When current lags voltage (no polarity display) - : When current leads voltage

Voltage Waveform Peak Value / Current Waveform Peak Value Measurement Specifications

Measurement method	Measures the waveform's peak value (for both positive and negative polarity) based on sampled instantaneous voltage values.									
Sampling frequency	Approx. 7	700 kHz								
Range configuration										
Voltage peak range	l									
Voltage range	15V	30V	60\	V	15	OV	300V		600V	1000V
Voltage peak range	90.000V	180.00	V 360.0)OV	900	V00.	1.8000k	V 3	3.6000kV	6.0000kV
Current peak range										
Current range	200mA	500mA	1A	2	2A	5/	A 10)A	20A	50A
Current peak range	1.2000A	3.0000A	6.0000A	12.	000A	30.00	OOA 60.0	00A	120.00A	300.00A
Measurement accuracy	ent Same as the voltage or current measurement accuracy at DC when 10 Hz ≤ f ≤ 1 kHz (f.s.: voltage peak range or current peak ran Provided as reference value when 0.1 Hz ≤ f < 10 Hz and when in cess of 1 kHz.				ak range).					
Effective measuring range	±5% to ±100% of voltage peak range (up to ±1,500 V) or ±5% to ±100% of current peak range (up to ±100 A)									
Display range	±0.3% to less than							nt p	oeak rang	ge (values

Voltage Crest Factor/ Current Crest Factor Measurement Specifications

method	Calculates values from display values once each display update interval for voltage and voltage waveform peak values or current and current waveform peak values.
Effective measuring range	As per voltage and voltage waveform peak value or current and current waveform peak value effective measurement ranges.
Display range	1.0000 to 612.00 (no polarity)

Synchronized C	Control
Functions	Timing of calculations, display updates, data updates, integration start/ stop/reset events, display hold operation, key lock operation, and zero- adjustment operation for the slave PW3336/PW3337 are synchronized with the master PW3336/PW3337.
Terminal	BNC terminal × 1 (non-isolated)
Terminal name	EXT SYNC
VO settings	Off: Synchronized control function off In: The EXT SYNC terminal is set to input, and a dedicated synchronization signal can be input (slave). Out: The EXT SYNC terminal is set to output, and a dedicated synchronization signal can be output (master).
Number of units for which synchronized control can be performed	1 master unit and 7 slave units (total 8 units)

Voltage Ripple Rate / Current Ripple Factor Measurement Specifications

	Calculates the AC component (peak to peak [peak width]) as a proportion of the voltage or current DC component				
	s per voltage and voltage waveform peak value or current and current aveform peak value effective measurement ranges				
Display range	0.00[%] to 500.00[%]				
Polarity	None				
F#: -!					

Efficiency Measurement Specifications

		Calculates the efficiency η [%] from the ratio of active power values for							
	method	channels and wires							
	Wiring modes and	Calculated based on the AC+DC rectifier active power							
calculation equations PW3336 series									
		Wring							

ı	Wiring (WIRING)	CH1	CH2	Calculation formulas				
I	1P2W × 2	1P2W 1P2W 1P3W 3P3W		η1=100×IP2I / IP1I η2=100×IP1I / IP2I				
ı	1P3W							
	3P3W							
	3P3W2M	3P3\	N2M					

PW3337 series

Wiring (WIRING)	CH1	CH2	СНЗ	Calculation formulas
1P2W × 3	1P2W 1P2W		1P2W	η1=100xIP3I / IP1I η2=100xIP1I / IP3I
1P3W & 1P2W	1P3W		1P2W	η1=100xIP3I / IPsumi
3P3W & 1P2W	3P:	3W	1P2W	η2=100xlPsuml / IP3I
3P3W2M		3P3W2N	1	
3V3A		3V3A		
3P3W3M	3P3W3M		1	
3P4W		3P4W		

Effective measuring range As per the active power effective measurement range

Display range 0.00[%] to 200.00[%]

Functional Specifications

Auto-range	Automatically changes the voltage and current range for each wiring
(AUTO)	mode according to the input
	Range up

: The range is increased when input exceeds 130% of the range or when the peak is exceeded.

Range down

The range is decreased when input falls below 15% of the range. However, the range is not decreased when the peak is exceeded at the lower range.

Averaging (AVG)

Averages the voltage, current, active power, apparent power, and reactive . The power factor and phase angle are calculated from averaged data.

Measured values other than peak values, power factor, frequency, integrated values, T.AV, crest factor, ripple rate, total harmonic distortion, and harmonics are averaged.

Method : Simple averaging

Number of averaging iterations and display update interval

Number of averaging Iterations	1 (OFF)	2	5	10	25	50	100	
Display update interval	200ms	400ms	18	28	58	10s	20s	

Scaling (VT, CT)

Applies user-defined VT and CT ratio settings to measured values. These settings can be configured separately for each wiring mode.

VT ratio setting range : OFF (1.0), 0.1 to 1,000 (setting: 0000) CT ratio setting range : OFF (1.0), 0.001 to 1,000 (setting: 0000) Stops display updates for all measured values and fixes the display

HOLD (HOLD) values at that point in time.

Measurement data acquired by communications is also fixed at that point in time. Internal calculations (including integration and integration elapsed time) will continue. Analog output and waveform output are not held.

Maximum value/ minimum value hold (MAX/MIN HOLD)

System Reset

Detects maximum and minimum measured values as well as maximum and minimum values for the voltage and current waveform peak and holds them on the display.

For data with polarity, display of the maximum value and minimum value for the data's absolute values is held (so that both positive and negative polarity values are shown).

Internal calculations (including integration and integration elapsed time) Analog output and waveform output are not held.

Zero Adjustment (0 ADJ) Key-lock

Degausses the current input unit DCCT and then zeroes out the current input offset. Disables key input in the measurement state, except for the SHIFT key

(KEY LOCK) and KEY LOCK key. Backup

Backs up settings and integration data if the instrument is turned off and if a power outage occurs. Initializes the instrument's settings. Communications-related settings (communications speed, address, and LAN-related settings) are not initialized.

Integration Measurement Specifications

Measurement types Rectifiers: AC+DC, AC+DC Umn

Displays the result of integrating current RMS value data (display values) once every display update interval (approx. 200 ms) as an integrated value.

Active power:

Displays the result of integrating active power values by polarity calculated once every cycle for the selected synchronization source as integrated values. Rectifier: DC

Displays the result of integrating instantaneous data obtained by sampling both current and active power by polarity as integrated value (When the active power contains both AC and DC, the DC component will not be integrated)

Integration Measurement Specifications

eg.a.cee	iodionicit opocinodations
Measurement items	Simultaneous integration of the following 6 parameters for each channel (total of 16 parameters): Sum of current integrated values (displayed as Ah on panel display) Positive current integrated value (displayed as Ah- on panel display) Negative current integrated value (displayed as Ah- on panel display) Sum of active power integrated values (displayed as Wh on panel display) Positive active power integrated value (displayed as Wh- on panel display) Negative active power integrated value (displayed as Wh- on panel display)
Integration time	1 min. to 10,000 hr., settable in 1 min. blocks
Integration time accuracy	±100 ppm ±1 dgt. (0°C to 40°C)
Integration measurement accuracy	(Current or active power measurement accuracy) + (±0.01% rdg. ±1 dgt.)
Effective measuring range	Until PEAK OVER U or PEAK OVER I occurs
Display resolution	999,999 (6 digits + decimal point)
Functions	Stopping integration based on integration time setting (timer) Displaying the integration elapsed time (displayed as TIME on panel display) Additional integration by repeatedly starting/stopping integration Backing up integrated values and the integration elapsed time during power outages Stopping integration when power returns
External control	Stopping/starting integration and resetting integrated values based on external control
Measuring range	Corresponds to the range set for START Integretation

Time Average Current / Time Average Active Power Measurement Specifications (T.AV)

-	_		
Measurement method	Calculates the average by dividing the integrated	I value by the inte	gration time
Measurement accuracy	racy) ±(±0.01%ro	dg. ±1dgt.)	
Effective measuring range	As per the current or active power effective	measurement r	ange

Harmonic Measurement Specifications (built-in function)

Measurement method Zero-cross simultaneous calculation method (separate windows by channel according to the wiring mode) Uniform thinning between zero-cross events after processing with a digital antialiasing filter Interpolation calculations (Lagrange interpolation) When the synchronization frequency falls within the 45 Hz to 66 Hz range

IEC 61000-4-7:2002 compliant

» Gaps and overlaps may occur if the measurement frequency is not 50 Hz or 60 Hz

When the synchronization frequency falls outside the 45 Hz to 66 Hz range No gaps or overlap will occur

Synchronization source Conforms to synchronization source (SYNC) for the basic measurement specifications Measurement channels

Measurement items · Harmonic voltage RMS value ·Harmonic voltage content % Harmonic voltage phase angle Harmonic current RMS value Harmonic current content % Harmonic current phase angle Harmonic active power content % Harmonic active power Harmonic voltage current phase difference Total harmonic voltage distortion . Total harmonic current distortion . Voltage fundamental waveform

Current fundamental waveform . Active power fundamental waveform Apparent power fundamental waveform · Reactive power fundamental waveform · Power factor fundamental waveform

Voltage current phase difference fundamental waveform Interchannel voltage fundamental wave phase difference Interchannel current fundamental wave phase different The following parameters can be downloaded as data during PC

communication but not displayed: Harmonic voltage phase angle Harmonic current phase angle Harmonic voltage current phase difference

FFT processing word length 32 bits

Number of FFT points 4.096 Window function Rectangular 45 Hz ≤ f < 56 Hz 56 Hz ≤ f < 66 Hz Analysis window width 178.57 ms to 222.22 ms (10 cycles) 181.82 ms to 214.29 ms (12 cycles) Frequencies other than the above 185.92 ms to 214.08 ms Data update rate Depends on window width

10 Hz to 640 Hz Synchronization frequency range

Maximum analysis order

Synchronization frequency (f) range	Analysis order
10 Hz ≤ f < 45 Hz	50th
45 Hz ≤ f < 56 Hz	50th
56 Hz ≤ f ≤ 66 Hz	50th
66 Hz < f≤ 100 Hz	50th
100 Hz < f ≤ 200 Hz	40th
200 Hz < f ≤ 300 Hz	25th
300 Hz < f ≤ 500 Hz	15th
500 Hz < f ≤ 640 Hz	11th

Analysis order upper 2nd to 50th limit setting

Measurement accuracy

y	f.8	s.: Measurement range						
		Frequency (f)	Voltage, Current, Active power					
		DC	±0.4%rdg.±0.2%f.s.					
		10 Hz ≤ f < 30 Hz	±0.4%rdg.±0.2%f.s.					
			±0.3%rdg.±0.1%f.s. ±0.4%rdg.±0.2%f.s.					
		1 kHz < f ≤ 5 kHz	±1.0%rdg.±0.5%f.s.					
	5 kHz < f ≤ 8 kHz		±4.0%rdg.±1.0%f.s.					
	F	For DC, add ±1 mA to current and (±1 mA) × (voltage read value) to active power						

Display Specifications

	Diopidy opcome	odiono e e e e e e e e e e e e e e e e e e
	Display	7-segment LED
	Number of display parameters	4
		Other than integrated values: 99,999 count Integrated values: 999,999 count
Display update rate		200 ms ±50 ms (approx. 5 updates per sec.) to 20 s (varies with number of averaging iterations setting)

External Current Sensor Input Specifications (built-in feature)

E	External Current	Sensor Input Sp	ec	ent Sensor Input Specifications (built-in feature)						
	Terminal	Isolated BNC termina	als,	1 for each channel			_			
1	Current sensor type switching	Off / Type 1 / Type 2 When set to off, input from the external current sensor input termina ignored.					8			
	Current sensor options	Type 1 9661 (500 A AC) 9669 (1,000 A AC) 9660 (100 A AC) Type 2 (9555-10 and L9217 is required; sold separately) 9272-10 (20 A/200 A AC) 9278 (200 A AC/DC) 9278 (200 A AC/DC) 9709 (500 A AC/DC) CT6863 (200 A AC/DC) * 9279 is not CE marked								
	Current measurement range									
	Power range configuration					d current ranges; fro	m			
ī	Measurement accuracy						_			
	Current, Active power						_			
	Frequency	Input < 50%f.s.		50%f.s. ≤ Input < 100%		100%f.s. ≤ Input				
	DC	±0.2%rdg. ±0.6%f.s	_	±0.2%rdg. ±0.6%f.	8.	±0.8%rdg.				
	0.1Hz≤f<16Hz	±0.2%rdg. ±0.2%f.s	_	±0.4%rdg.		±0.4%rdg.				
	16Hz≤f < 45Hz	±0.2%rdg. ±0.2%f.s		±0.4%rdg.		±0.4%rdg.	_			
	45Hz ≤ f ≤ 66Hz	±0.2%rdg. ±0.1%f.s	_	±0.3%rdg.		±0.3%rdg.	_			
	66Hz < f ≤ 500Hz 500Hz < f ≤ 1kHz	±0.2%rdg. ±0.2%f.s ±0.2%rdg. ±0.3%f.s		±0.4%rdg.		±0.4%rdg.	_			
	1kHz < f ≤ 10kHz	±0.2%rdg. ±0.3%r.s ±5.0%rdg.	8.	±0.5%rdg. ±5.0%rdg.		±0.5%rdg. ±5.0%rdg.	_			
	10kHz < f ≤ 50kHz	±0.0%lug.	_	±5.0%ldg.	_	±3.0%/dg.	_			
	50kHz < f ≤ 100kHz		_		_		_			
		f.s.: Each measurement range •To obtain the current or active power accuracy, add the current sensor accuracy to the above current and active power accuracy figures. •The effective measurement range and frequency characteristic conform to the current sensor's specifications. •Values for current, and active power for which 0.1 Hz ≤ f < 10 Hz are for reference only. •Values for voltage in excess of 200 V active power for which 10 Hz ≤ f < 16 Hz are for reference only.								
	Temperature characteristics		(ins	trument temperature asurement range) perature coefficient t						
	Power factor effects	 Internal circuit voltage Add the current ser current phase different 	ge/ nso enc	current phase differe or phase accuracy to be noted above.	the	internal circuit voltag	•			
1	Current peak value measurement accuracy	.(External current ser (f.s.:current peak ran .Add the current sen	ge)	or input instrument ac r accuracy to the abo						
	Harmonic measurement	Frequency		Voltage	Cı	ırrent, Active power				
	accuracy	DC	±(0.4%rdg. ±0.2%f.s.	±(0.6%rdg. ±0.8%f.s.				
		10Hz≤f<30Hz		0.4%rdg. ±0.2%f.s.		0.6%rdg. ±0.4%f.s.				
		30Hz≤ f≤ 400Hz		0.3%rdg. ±0.1%f.s.		0.5%rdg. ±0.3%f.s.				
		400Hz < f ≤ 1kHz		0.4%rdg. ±0.2%f.s.		0.6%rdg. ±0.5%f.s.				
		1kHz < f ≤ 5kHz		1.0%rdg. ±0.5%f.s.		1.0%rdg. ±5.5%f.s.				
		5kHz < f ≤ 8kHz		1.0%rdg. ±1.0%f.s.	±ź	2.0%rdg. ±6.0%f.s.				
		 To obtain the current 	s.: Each measurement range To obtain the current or active power accuracy, add the current sensor's accuracy to the above current and active power accuracy figures.							

D/A Output Specifications (PW3336-02/-03 and PW3337-02/-03)

Number of output channels	16
Configuration	16-bit D/A converter (polarity + 15 bits)
Output parameters	U1 to U3 (voltage level) or u1 to u3 (instantaneous voltage waveform) (switchable) I1 to I3 (current level) or I1 to I3 (instantaneous current waveform) (switchable) P1 to P3 (active power level) or p1 to p3 (instantaneous power waveform) (switchable) Psurn (active power level) or HI-Psurn (high-speed active power level) (switchable) Psurn and HI-Psurn output is not available (0 V) when using the 1P2W wiring mode.P12 is output when using 1P3W, 3P3W, or 3P3W2M, and P123 is output when using 3V3A, 3P3W3M, or 3P4W. D/A1 to D/A3
	: Select any 3 from channel or sum value for voltage, current, active power, apparent power, reactive power, power factor, phase angle, total harmonic voltage/current distortion, inter-channel voltage/ current fundamental wave phase difference, voltage/current crest factor, time average current/active power, voltage/current ripple rate, frequency, efficiency, current integration, active power integration (harmonic output is not available for individual orders). HI-P1 to HI-P3 and HI-Psum (high-speed active power level): Fixed to AC+DC For other level output, select AC+DC, AC+DC Umn, DC, AC, or fnd.
Output accuracy	f.s.: Relative to the output voltage rated value for each output parameter Level output : (Output parameter measurement accuracy) + (±0.2% f.s.) High-speed active power level output : (Output parameter measurement accuracy) + (±0.2% f.s.) Instantaneous waveform output : (Output parameter measurement accuracy) + (±1.0% f.s.) Instantaneous voltage, instantaneous current: RMS value level Instantaneous power: Average value level
Output frequency band	Instantaneous waveform output, high-speed active power level output At DC or 10 Hz to 5 kHz, accuracy is as defined above.

Output voltage	Level output				
	Voltage, current, active power, apparent power, reactive power,				
	time avera				
	: ±2 V l	OC for ±100% of range			
		OC at ±0.0000, 0 V DC at ±1.0	000		
	Phase ang	le			
		: 0 V DC at 0.00°, ±2 V DC at ±180.00°			
		Voltage/current ripple rate, total harmonic voltage/current distortion : + 2 V DC at 100.00%			
		rrent crest factor			
		OC at 10.000			
	Frequency : Varies with measured value.				
		/ DC per 100 Hz from 0.1000 F	to 300.00 Hz		
	+2 \	DC per 10 kHz from 300.01 F	to 30.000 kHz		
		DC per 100 kHz from 30.001	kHz to 220.00 kHz		
	Efficiency	OC at 200.00%			
		egration, active power integrati	on		
		DC at (range) \times (integration set	time)		
	Waveform				
Maximum output voltage	Approx. ±12 \	relative to 100% of range			
Output update rate	Level output	7 00			
Output update rate		200 ms ±50 ms (approx. 5 time	s per sec.)		
	Update	rate is unrelated to number of			
		and display hold operation.			
	Waveform out	put 1.4 µs (approx. 87.5 kHz)			
	High-speed P				
	: Updated	once every cycle for the input v	vaveform set		
		nchronization source.			
Response time	Level output	or less (when the input changes	abruptly from 00/, to 000/		
		or from 100% to 10%, the time required in order to satisfy the accuracy range) Waveform output			
	: 0.2 ms or	riess ctive power level output			
	: 1 cycle	sure power level output			
Temperature characteristic	±0.05% f.s./°(C or less			
Output resistance	100 Ω ±5 Ω				
External cont	rol (built-ir	n feature)			
Functions	Integration start	stop, integration reset and hold v	ia external control		
External control	Input signal lev	el: 0 to 5 V (high-speed CMOS le	evel or shorted [Lo]/open [H		
	Functions	External control signal	External control terminal		
	Start	Hi → Lo	START/STOP		
	Stop	Lo → Hi	01/411/0101		
	Reset	Lo interval of at least 200 ms	RESET		
	Hold on	HI → Lo	HOLD		
	Hold off	Lo → Hi	HOLD		
GP-IB interface	e (PW3336-	01/-03, PW3337-01/-	03)		
Method		78 compliant; see IEEE488.2 1			
		tions: SH1, AH1, T6, L4, SR1,	RL1, PP0, DC1, DT1, C0		
Address		ol by controller			
Address	00 to 30				
RS-232C interf	ace (built-i	n feature)			
Connector	D-sub 9-pin c	onnector × 1	•		

Connector	D-sub 9-pin connector x 1
method	Full duplex, Start-stop synchronization, Stop bits: 1 (fixed), Data bits: 8 (fixed), Parity: None Remote control by controller
Communication Speed	9600bps/ 38400bps

LAN interface (built-in feature)

Connector	RJ-45 connector x 1	
Electrical Specifications	IEEE802.3 compliant	
Transmission Method	10BASE-T/100BASE-TX (automatic detection)	
Protocol	TCP/IP	
	HTTP server (remote operation, firmware updates) Dedicated ports (command control, data transfer) Remote control by controller (REMOTE lamp will light up.)	

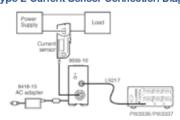
General Specifications (product guaranteed for one year)

General Specifi	Catrons (product guaranteed for one year)	
Operating environment	Indoors, altitude up to 2000 m (6562-ft.), pollution degree 2	
Operating temperature and humidity	0 to 40°C (32 to 104°F), 80% RH or less (non-condensating)	
Storage temperature and humidity	-10 to 50°C (14 to 122°F) 80% RH or less (non-condensating)	
Dielectric strength	4,290 Vrms AC (sensed current: 1 mA) Between voltage input terminals and (case, interface, and output terminals) Between current direct input terminals and (case, interface, and output terminals) Between voltage input terminals and current direct input terminals	
Maximum rated voltage to earth	Voltage input terminal, Current direct input terminal Measurement category III 600 V (anticipated transient overvoltage 6000 V) Measurement category II 1000 V (anticipated transient overvoltage 6000 V)	
Maximum input voltage	Between voltage input terminals U: 1,000 V, ±1,500 Vpeak	
Maximum input current	Between +/- current direct input terminals I: ±70 A, ±100 Apeak	
Applicable Standards	Safety: EN61010, EMC: EN61326 Class A/ EN61000-3-2/ EN61000-3-3	
Rated supply voltage	100 VAC to 240 VAC, Rated power supply frequency: 50/60 Hz	
Maximum rated power	40 VA or less	
Dimensions	Approx. 305W(12.01") × 132H(5.20") × 256D(10.08) mm (excluding protrusions)	
Mass	PW3336 series Approx. 5 kg (176.4 oz.) PW3337 series Approx. 6 kg (211.6 oz.)	
Accessories	Instruction manual × 1. Measurement guide × 1. Power cord × 1	

Current Measurement Options [Type 1] Specifications (Can be connected to the current sensor Input terminals on the PW3336/PW3337 series.)

Model	CLAMP ON SENSOR 9660	CLAMP ON SENSOR 9661	CLAMP ON SENSOR 9669	FLEXIBLE CLAMP ON SENSOR CT9667
Appearance			OK.	
Primary current rating	100A AC	500A AC	1000 A AC	500A AC, 5000A AC
Measurable conductor diameter	Max.φ15mm (0.59*)	Max.φ46mm (1.81")	Max. φ55 mm(2.17*), 80 (3.15*)×20(0.79*) mm busbar	Max. φ254mm(10")
Amplitude accuracy *	±0.3%rdg.±0.02%f.s. *	±0.3%rdg.±0.01%f.s. *	±1.0%rdg.±0.01%f.s. *	±2.0%rdg.±0.3%f.s. *
Phase accuracy *	±1° or less *	±0.5° or less *	±1° or less *	±1° or less *
Frequency characteristics	±1.0% or less for 66Hz to 5kHz (deviation from specified accuracy)		Within ±2% at 40Hz to 5kHz (deviation from accuracy)	±3dB or less for 10 Hz to 20kHz (within ±3dB)
Operating Temperature & Humidity (non-condensating)				0 to 40°C (32-104°F), 80%RH or lower, 40 to 50°C (104-122°F), 50%RH or lower
Effect of conductor position	Within ±0.5% (deviation from center)		Within ±1.5% (deviation from center)	Within ±3% (deviation from center)
Effect of external electromagnetic field	0.1A equivalent or lower (400A/m,55Hz)		1A equivalent or lower (400A/m, 55Hz)	1.5% f.s. or lower (400A/m, 55Hz)
Maximum rated voltage to earth	CAT III 300Vrms		CATIII 600Vrms	CATIII 1000 Vrms, CATIV 600 Vrms
Dimensions, Mass	46W(1.81")×135H(5.31")×21D(0.83")mm, 230g(8.1oz.)	78W(3.07")×152H(5.98")×42D(1.65")mm, 380g(13.4oz.)	99.5W (3.92") × 188H (7.40") × 42D (1.65") mm, 590g (20.8 oz.)	Circuit box: 35W(1.36") x 120.5H(4.74") x 34D(1.34") mm, 14O g (4.9 oz.)
Power supply	_	_	_	LR6 alkaline battery x2, or AC Adapter (option)
Options (sold separately)			_	AC ADAPTER 9445-02 (universal 100 to 240/AC /for USA) AC ADAPTER 9445-03 (universal 100 to 240/AC /for Europe)

Current Measurement Options [Type 2] Specifications (Requires Sensor Unit 9555-10 and Connection Cable L9217.)


Current Measu	rement Options [Type 2] Spec	eifications (Requires Sensor Unit 9	555-10 and Connection Cable L921	7.)	
Model	CLAMP ON SENSOR 9272-10	UNIVERSAL CLAMP ON CT 9277	UNIVERSAL CLAMP ON CT 9278	UNIVERSAL CLAMP ON CT 9279	
Appearance	%			Not CE-marked	
Primary current rating	20A/200A AC	20A AC/DC	200A AC/DC	500A AC/DC	
Measurable conductor diameter	Max.φ 46mm (1.81")	Мах.ф 20r		Мах.ф 40mm (1.57")	
Amplitude accuracy *	±0.3%rdg.±0.01%f.s. *		. (30 minutes after power is turned on and		
Phase accuracy *	±0.2° or less	`	nutes after power is turned on and after ma	-	
Frequency characteristics** (typical)	1Hz to 5Hz: ±2%rdg.±0.1%f.s. 1kHz to 5kHz: ±1%rdg.±0.05%f.s. (±1.0°) 10kHz to 50kHz: ±5%rdg.±0.1%f.s.	1 k to 50 kHz:	±1.0% (±0.5°) ±2.5 % (±2.5°) :: ±5.0 % (±5.0°)	DC to 1kHz: ±1.0% (±0.5°) 1 k to 10 kHz: ±2.5 % (±2.5°) 10 k to 20 kHz: ±5.0 % (±5.0°)	
Operating Temperature & Humidity (non-condensating)	0°C to 50°C (-32°F to 122°F) 80%RH or lower	0°C to 40°C (-32°F to 104°F) 80%RH or lower			
Effect of conductor position	Within ±0.2%rdg. (deviation from center)	Within ±0.2%rdg. (deviation from center)	Within ±1.5%rdg.(deviation from center)	Within ±1.5%rdg. (deviation from center)	
Effect of external electromagnetic field	0.1A equivalent or lower (400A/m, 55Hz)	0.2A equivalent or lower (400A/m, 55Hz and DC)	1A equivalent or lower (400A/m, 55Hz and DC)	2A equivalent or lower (400A/m, 55Hz and DC)	
Maximum rated voltage to earth	CAT III 600Vrms	CAT III 300Vrms	CAT III 300Vrms	Not CE-marked 600 V insulated conductor	
Dimensions, Mass	78W(3.07")×188H(7.40")×35D(1.38")mm, 430g(15.2 oz.)	176W(6.93")×69H(2. 470g(1	.72")×27D(1.06")mm 6.6 oz.)	220W(8.66*)×103H(4.06*)×43.5D(1.71*)mm, 470g(16.6 oz.)	
Power supply		Sensor Un	Sensor Unit 9555-10		
Options (sold separately)					
Model	AC/DC CURRENT SENSOR CT6862	AC/DC CURRENT SENSOR CT6863	AC/DC CURRENT SENSOR 9709	AC/DC CURRENT SENSOR CT6865	
Appearance					
Primary current rating	50A AC/DC	200A AC/DC	500A AC/DC	1000A AC/DC	
Measurable conductor diameter	Mex.φ 24mm (0.94*)		Мах.ф 36і	mm (1.42")	
Amplitude accuracy *	±0.05 %rdg.±0.0 (Right after power is turned o	01 % f.s. , ±0.2° on at DC and 16Hz to 400Hz)	±0.05 %rdg.±0.01 % f.s., ±0.2° (10 minutes after power is turned on)	±0.05 %rdg.±0.01 % f.s., ±0.2°	
Phase accuracy *	±0.05 %rdg.±0.01 % f.s. , ±0.2° (Right after power is turned on at DC and 16Hz to 400Hz)		±0.05 %rdg.±0.01 % f.s., ±0.2° (10 minutes after power is turned on)	±0.05 %rdg.±0.01 % f.s., ±0.2°	
Frequency characteristics** (typical)	DC to 16 Hz: ±0.1%rdg.±0.02%f.s.(±0.3°) 5kHz to 10kHz: ±1%rdg.±0.02%f.s. (±1.0°) 500kHz to 1M Hz: ±30%rdg.±0.05%f.s. ***	5kHz to 10kHz: ±1%rdg.±0.02%f.s. (±1.0°) 300kHz to 500k Hz: ±30%rdg.±0.05%f.s.***	DC to 45Hz: ±0.2%rdg.±0.02%f.s.(±0.3°) 5kHz to 10kHz: ±2%rdg.±0.1%f.s. (±2.0°) 20kHz to 100kHz: ±30%rdg.±0.1%f.s. (±30°)	DC to 16Hz: ±0.1%rdg.±0.02%f.s.(±0.3°) 500Hz to 10kHz: ±5%rdg.±0.05%f.s. 10kHz to 20kHz: ±30%rdg.±0.1%f.s.	
Operating Temperature & Humidity (non-condensating)			9709: 0°C to 50°C (-32°F to 122°F) 80%RH or less	-30°C to 85°C (-22°F to 185°F), 80%RH or less	
Effect of conductor postion	Within ±0.01%rdg. (deviation from center)	Within ±0.01%rdg. (deviation from center)	Within ±0.05%rdg. (deviation from center)	Within ±0.05%rdg. (deviation from center)	
Effect of external electromagnetic field	10mA equivalent or lower (400A/m, 60Hz and DC)	50mA equivalent or lower (400A/m, 60Hz and DC)	50mA equivalent or lower (400A/m, 60Hz and DC)	200mA equivalent or lower (400A/m, 60Hz and DC)	
Maximum rated voltage to earth	CAT III 1000Vrms	CAT III 1000Vrms	CAT III 1000Vrms	CAT III 1000Vrms	
Dimensions, Mass	70W(2.76")×100H(3. CT6862: 340g(12.0 oz.),		160W(6.30")×112H(4.41")×50D(1.97")mm, 9709: 850g(30.0oz.) CT9895: 1000g(35.3oz)		
Power supply		Sensor Un	nit 9555-10		
Options (sold separately)		Sensor Unit 9555-10, C			
*: 45 to 66 Hz,	DC: DC compatible sensor **: Include	les derating characteristics *** : No ph	ase precision regulations		

Type 2 Current Sensor Options

	Sensor Unit 9555-10
Appearance	
Compatible current sensors	9272-10, 9277, 9728, 9279, CT6862, CT6863, 9709, CT6865
Output terminals	BNC terminals
Power supply	AC Adapter 9418-15 (100 to 240 V AC)
Accessories	Instruction manual, AC Adapter 9418-15

	Connection Cord L9217
Appearance	7/
Cord length	3 m
Terminals	Isolated BNC to isolated BNC

Type 2 Current Sensor Connection Diagram

Power Meter PW3336 (2-channel)

> PW3336-01 (2-channel, with GP-IB terminal) PW3336-02 (2-channel, with D/A output terminal)

PW3336-03 (2-channel, with GP-IB terminal and D/A output terminal)

Power Meter PW3337 (3-channel)

> PW3337-01 (3-channel, with GP-IB terminal) PW3337-02 (3-channel, with D/A output terminal)

PW3337-03 (3-channel, with GP-IB terminal and D/A output terminal)

Accessories: Instruction manual × 1, Measurement guide × 1, Power cord × 1

Current measurement options: Type 1 (For more information, see page 11.) Can be connected to the current sensor input terminals on the PW3336/PW3337 series

CLAMP ON SENSOR 9660 100A AC φ15mm(0.59")

CLAMP ON SENSOR 9661 500A AC φ46mm(1.81")

CLAMP ON SENSOR 9669 1000A AC ф55mm(2.17"), 80(3.15")×20(0.79")mm busbar

For 50/60Hz commercial power lines

FLEXIBLE CLAMP ON SENSOR CT9667 500A AC/ 5000A AC (selectable),

ф254mm (10"), Power supply: LR06 alkaline battery

or AC ADAPTER 9445-02/03 (sold separately)

Current measurement options: Type 2 (For more information, see page 11.)

CLAMP ON SENSOR 9272-10 20A/200A AC φ46mm(1.81")

POWER SUPPLY: 9555-10

UNIVERSAL CLAMP ON CT 9277 20A AC/DC φ20mm(0.79") POWER SUPPLY: 9555-10

UNIVERSAL CLAMP ON CT 9278 200A AC/DC φ20mm(0.79") POWER SUPPLY: 9555-10

Requires SENSOR UNIT 9555-10 and CONNECTION CORD L9217

UNIVERSAL CLAMP ON CT 9279 (no CE mark) 500A AC/DC φ40mm(1.57") POWER SUPPLY: 9555-10

SENSOR UNIT 9555-10 POWER SUPPLY: 100V to 240V AC (50/60Hz)

AC/DC CURRENT SENSOR CT6862 50A AC/DC φ24mm(0.94") POWER SUPPLY: 9555-10

AC/DC CURRENT SENSOR CT6863 200A AC/DC φ24mm(0.94") POWER SUPPLY: 9555-10

AC/DC CURRENT SENSOR 9709 500A AC/DC φ36mm(1.42") POWER SUPPLY: 9555-10

AC/DC CURRENT SENSOR CT6865 1000A AC/DC φ36mm(1.42") POWER SUPPLY: 9555-10

L9217 For sensor output Cord length: 3m Isolated BNC to isolated BNC

RS-232C CABLE 9637 Cable length: 1.8m (5.91ft) 9pin to 9pin

RS-232C CABLE 9638 Cable length: 1.8m (5.91ft) 9pin to 25pin

GP-IB CONNECTOR CABLE 9151-02 Cable length: 2m (6.56ft)

LAN CABLE 9642 Cable length: 5m (16.41ft) supplied with straight to cross

9165 For synchronized control Cable length: 1.5 m (4.92ft), metal BNC to metal BNC

CONNECTION CORD

Note: Company names and Product names appearing in this catalog are trademarks or registered trademarks of various companies.

DISTRIBUTED BY

HIOKI E.E. CORPORATION

HEADQUARTERS:

81 Koizumi, Ueda, Nagano, 386-1192, Japan TEL +81-268-28-0562 FAX +81-268-28-0568 http://www.hioki.com/E-mail: os-com@hioki.co.jp

HIOKI USA CORPORATION:
TEL +1-609-409-9109 FAX +1-609-409-9108 TEL +82-42-936-1281 FAX +82-42-936-1284 http://www.hiokiusa.com / E-mail: hioki@hiokiusa.com

HIOKI (Shanghai) SALES & TRADING CO., LTD.: TEL +86-21-63910090 FAX +86-21-63910360

http://www.hioki.cn / E-mail: info@hioki.com.cn

HIOKI INDIA PRIVATE LIMITED:

TEL +91-124-6590210 FAX +91-124-6460113 E-mail: hioki@hioki.in

HIOKI SINGAPORE PTE. LTD.:

TEL +65-6634-7677 FAX +65-6634-7477 E-mail: Info@hloki.com.sg